tflearn 基于循环神经网络(LSTM)计算文本情感值

这篇博客介绍了如何利用tflearn库和循环神经网络(LSTM)对中文文本进行情感计算。通过预处理步骤,包括文本转简体、转小写和分词,将文本转化为词ID序列,然后应用LSTM模型进行文本分类。在淘宝好评差评的分类任务中,该模型取得了88.7%的准确率。
摘要由CSDN通过智能技术生成

修改自官方教程

对于中文文本,可以先用hanziconv把繁体转简体,英文转小写,再用结巴分词把句子转成词序列,根据词汇表转成词ID序列

这个模型我用来分类淘宝的好评、差评,正确率达到了88.7%

# -*- coding: utf-8 -*-

"""
tflearn教程,用LSTM循环神经网络分类文本
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py
"""

import tflearn
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb

# 词汇表词数
VOCAB_LEN = 10000
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值