要求n-1个公司各建一条路,首先把所有公司的路都加上贡献,用一次矩阵树定理。但是其中有不合要求的。所以再减去有一家公司没用的,就是从n-1个公司中选出n-2个,加上贡献,用矩阵树定理,总答案减去得到的答案。但又多减了只用n-3个公司的,还要再加上……一直到处理完只选一家的,就得到了最终答案。
我高斯消元时用的辗转相除,比逆元慢,不过也能过。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=20,M=200;
const ll mod=1e9+7;
struct edge{
int x[M],y[M];
}d1[N];
ll c[N][N],ans;
int n,m1[N],d[N][N],a[N][N];
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return f?-x:x;
}
ll gauss(){
ll ans1=1;
for(int i=1;i<n;++i){
for(int x,j=i+1;j<n;++j)
while(c[j][i]){
x=c[i][i]/c[j][i];
for(int k=i;k<n;++k)c[i][k]=(c[i][k]-x*c[j][k]%mod)%mod;
swap(c[i],c[j]),ans1=-ans1;
}
ans1=(ans1*c[i][i]%mod+mod)%mod;
}
return ans1;
}
void dfs(int now,int al,int tot){
if(al==tot){
for(int i=1;i<n;++i)for(int j=1;j<n;++j)c[i][j]=1ll*(d[i][j]-a[i][j]);
ll x=gauss();((n-1-tot)&1)?ans=(ans-x+mod)%mod:ans=(ans+x)%mod;
return;
}
for(int i=now;i<n;++i){
for(int j=1;j<=m1[i];++j){
++a[d1[i].x[j]][d1[i].y[j]],++a[d1[i].y[j]][d1[i].x[j]],
++d[d1[i].x[j]][d1[i].x[j]],++d[d1[i].y[j]][d1[i].y[j]];
}
dfs(i+1,al+1,tot);
for(int j=1;j<=m1[i];++j){
--a[d1[i].x[j]][d1[i].y[j]],--a[d1[i].y[j]][d1[i].x[j]],
--d[d1[i].x[j]][d1[i].x[j]],--d[d1[i].y[j]][d1[i].y[j]];
}
}
}
int main(){
n=read();
for(int i=1;i<n;++i){
m1[i]=read();
for(int j=1;j<=m1[i];++j)d1[i].x[j]=read(),d1[i].y[j]=read();
}
ans=0;
for(int i=n-1;i>=1;--i){
memset(a,0,sizeof a),memset(d,0,sizeof d);
dfs(1,0,i);
}
printf("%lld",ans);
return 0;
}