BZOJ3439:Kpm的MC密码 字典树+dfs序+主席树

版权声明:本文是蒟蒻写的,转载。。。随便吧 https://blog.csdn.net/xgc_woker/article/details/79980795

Description
系统将随机生成n个由a…z组成的字符串,由1…n编号(s1,s2…,sn),然后将它们按序告诉你,接下来会给你n个数字,分别为k1…kn,对于每一个ki,要求你求出列出的n个字符串中所有是si的kpm串的字符串的编号中第ki小的数,如果不存在第ki小的数,则用-1代替。(比如说给出的字符串是cd,abcd,bcd,此时k1=2,那么”cd”的kpm串有”cd”,”abcd”,”bcd”,编号分别为1,2,3其中第2小的编号就是2)


Sample Input
3
cd
abcd
bcd
2
3
1


Sample Output
2
-1
2


你将字符串反着建一遍字典树,然后给每个串开头所属的编号打一个权值,由于可能会有多个串相等,考虑用链表。然后用这个dfs序建主席树,对于一个字符求它编号第k小的后缀串其实就是在它的子树里查询第k小的值,然后就乱水。


#include <cstdio>
#include <cstring>

using namespace std;

struct node {
    int s, v[30];
    node() {
        s = 0;
        memset(v, -1, sizeof(v));
    }
} t[310000]; int tot;
struct trnode {
    int lc, rc, c;
} tr[20 * 110000]; int cnt, rt[110000];
int n, id, pre[110000], a[110000], ll[310000], rr[310000];
char ss[310000];

void bt(int x, int now) {
    int len = strlen(ss + 1);
    for(int i = len; i >= 1; i--) {
        int y = ss[i] - 'a' + 1;
        if(t[x].v[y] == -1) t[x].v[y] = ++tot;
        x = t[x].v[y];
    }
    if(t[x].s != 0) {
        pre[now] = t[x].s;
        t[x].s = now;
    }
    else t[x].s = now;
    a[now] = x;
}

void Link(int &u, int l, int r, int p) {
    if(!u) u = ++cnt;
    tr[u].c++;
    if(l == r) return ;
    int mid = (l + r) / 2;
    if(p <= mid) Link(tr[u].lc, l, mid, p);
    else Link(tr[u].rc, mid + 1, r, p);
}

void Merge(int &u1, int u2) {
    if(!u1 || !u2) {u1 = u1 + u2; return ;}
    tr[u1].c += tr[u2].c;
    Merge(tr[u1].lc, tr[u2].lc);
    Merge(tr[u1].rc, tr[u2].rc);
}

int query(int u1, int u2, int l, int r, int k) {
    if(l == r) return l;
    int c = tr[tr[u2].lc].c - tr[tr[u1].lc].c;
    int mid = (l + r) / 2;
    if(k <= c) return query(tr[u1].lc, tr[u2].lc, l, mid, k);
    else return query(tr[u1].rc, tr[u2].rc, mid + 1, r, k - c);
}

void dfs(int x) {
    ll[x] = id++;
    int now = t[x].s;
    while(now != 0) {
        Link(rt[ll[x]], 1, n, now);
        now = pre[now];
    }
    for(int i = 1; i <= 26; i++) {
        if(t[x].v[i] != -1) {
            int y = t[x].v[i];
            dfs(y);
        }
    }
    rr[x] = id - 1;
}

int main() {
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) {
        scanf("%s", ss + 1);
        bt(0, i);
    }
    dfs(0);
    for(int i = 1; i <= tot; i++) Merge(rt[i], rt[i - 1]);
    for(int i = 1; i <= n; i++) {
        int x = a[i];
        int k; scanf("%d", &k);
        int g1 = rt[ll[x] - 1], g2 = rt[rr[x]];
        if(tr[g2].c - tr[g1].c < k) {
            printf("-1\n");
            continue;
        }
        printf("%d\n", query(g1, g2, 1, n, k));
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页