【导数】学习笔记

闲着无聊,刚好最近复学导数,就来随手写一写学习笔记。

周所知众,学导数前需要知道一些极限的知识,所以我决定先讲一点极限的知识。

ps:在本文中可能会出现一些符号,这里列举两个会出现多次的符号: ( ) () () 表示不包括端点的区间, [ ] [] [] 表示包括端点的区间, ∪ \cup 表示交集。在导数的“运算与运算法则”中, c c c 以及 C C C 表示常数。

极限

这里只写了极限的定义与运算法则。

定义

极限描述的是在自变量的某一变化过程中,函数值的变化情况(废话)。

在此之前还得讲一些乱七八糟的东西:左、右邻域与去心邻域。

按照直接理解来说,邻域就是附近的区域。在这里,我们定义 x 0 x_0 x0 的邻域为一个区间: ( x 0 − X , x 0 + X ) (x_0-X,x_0+X) (x0X,x0+X),其中 X X X 为一个正数(不过这个东西好像用不到)。

自然地,去心邻域指的就是不包括中心的邻域。我们定义 x 0 x_0 x0 的去心邻域为一个区间: ( x 0 − X , x 0 ) ∪ ( x 0 , x 0 + X ) (x_0-X,x_0) \cup (x_0,x_0+X) (x0X,x0)(x0,x0+X)。左邻域就是指去心邻域的左区间,即 ( x 0 − X , x 0 ) (x_0-X,x_0) (x0X,x0)。右邻域就是指去心邻域的右区间,即 ( x 0 , x 0 + X ) (x_0,x_0+X) (x0,x0+X),其中 X X X 为一个正数。

接下来就可以讲定义了。

极限还要分两类,一类是趋近于一个非无穷的常数,另一类是趋近于无穷,正无穷和负无穷。

先讲趋近常数的,定义是设函数 f ( x ) f(x) f(x) x 0 x_0 x0 的某个去心邻域内有定义,如果存在实数 A A A,使得 ∀ M > 0 \forall M>0 M>0,都有一个数 N > 0 N>0 N>0,使得当 x ∈ ( x 0 − N , x 0 ) ∪ ( x 0 , x 0 + N ) x\isin(x_0-N,x_0) \cup (x_0,x_0+N) x(x0N,x0)(x0,x0+N) 时,有 ∣ f ( x ) − A ∣ < M \lvert f(x)-A\rvert < M f(x)A<M,则称 f ( x ) f(x) f(x) x 0 x_0 x0 点处的极限为 A A A,记作 lim ⁡ x → x 0 f ( x ) = A \displaystyle\lim_{x \to x_0}f(x)=A xx0limf(x)=A

左极限的定义是设函数 f ( x ) f(x) f(x) x 0 x_0 x0 的某个左邻域内有定义,如果存在实数 A A A,使得 ∀ M > 0 \forall M>0 M>0,都有一个数 N > 0 N>0 N>0,使得当 x ∈ ( x 0 − N , x 0 ) x\isin(x_0-N,x_0) x(x0N,x0) 时,有 ∣ f ( x ) − A ∣ < M \lvert f(x)-A\rvert < M f(x)A<M,则称 f ( x ) f(x) f(x) x 0 x_0 x0 点处的左极限值为 A A A,记作 lim ⁡ x → x 0 − f ( x ) = A \displaystyle\lim_{x \to x_0-}f(x)=A xx0limf(x)=A

类似地,可以定义右极限,记作 lim ⁡ x → x 0 + f ( x ) = A \displaystyle\lim_{x \to x_0+}f(x)=A xx0+limf(x)=A

当然 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x \to x_0}f(x) xx0limf(x) 存在的前提条件是 lim ⁡ x → x 0 − f ( x ) \displaystyle\lim_{x \to x_0-}f(x) xx0limf(x) lim ⁡ x → x 0 + f ( x ) \displaystyle\lim_{x \to x_0+}f(x) xx0+limf(x) 都存在且他们相等。

接下来就是趋近于无穷的,定义是设函数 f ( x ) f(x) f(x) x ∈ ( − ∞ , − X ) ∪ ( X , + ∞ ) x \isin (-\infty,-X) \cup (X,+\infty) x(,X)(X,+) 里有定义( X X X 为某个正数),如果存在实数 A A A,使得 ∀ M > 0 \forall M>0 M>0,都有一个数 N > 0 N>0 N>0,使得当 ∣ x ∣ > N \lvert x \rvert > N x>N 时,有 ∣ f ( x ) − A ∣ < M \lvert f(x)-A\rvert < M f(x)A<M,则称 x → ∞ x \rightarrow \infty x f ( x ) f(x) f(x) 的极限为 A A A,记作 lim ⁡ x → ∞ f ( x ) = A \displaystyle\lim_{x \to \infty}f(x)=A xlimf(x)=A

类似地,可以分别定义 x → − ∞ x \rightarrow -\infty x x → + ∞ x \rightarrow +\infty x+ f ( x ) f(x) f(x) 的左侧极限 lim ⁡ x → − ∞ \displaystyle\lim_{x \to -\infty} xlim 和右侧极限 lim ⁡ x → + ∞ \displaystyle\lim_{x \to +\infty} x+lim

当然 lim ⁡ x → ∞ f ( x ) \displaystyle\lim_{x \to \infty}f(x) xlimf(x) 存在的前提条件是 lim ⁡ x → − ∞ f ( x ) \displaystyle\lim_{x \to -\infty}f(x) xlimf(x) lim ⁡ x → + ∞ f ( x ) \displaystyle\lim_{x \to +\infty}f(x) x+limf(x) 都存在且他们相等。

p.s:这里不需要太深入了解定义,导数需要的只是简单的实际意义。除了了解定义外,只需要分清楚六种极限过程即可。

运算法则

lim ⁡ x → □ f ( x ) = A \displaystyle\lim_{x \to \square}f(x)=A xlimf(x)=A lim ⁡ x → □ g ( x ) = B \displaystyle\lim_{x \to \square}g(x)=B xlimg(x)=B

lim ⁡ x → □ [ f ( x ) + g ( x ) ] = A + B \displaystyle\lim_{x \to \square}[f(x)+g(x)]=A+B xlim[f(x)+g(x)]=A+B lim ⁡ x → □ [ f ( x ) − g ( x ) ] = A − B \displaystyle\lim_{x \to \square}[f(x)-g(x)]=A-B xlim[f(x)g(x)]=AB lim ⁡ x → □ f ( x ) × g ( x ) = A × B \displaystyle\lim_{x \to \square}f(x) \times g(x)=A \times B xlimf(x)×g(x)=A×B lim ⁡ x → □ f ( x ) g ( x ) = A B ( B ≠ 0 ) \displaystyle\lim_{x \to \square}\dfrac{f(x)}{g(x)}=\dfrac{A}{B}(B\neq0) xlimg(x)f(x)=BA(B=0)

导数

概念(定义)

还得先讲一些没用的东西。

平均变化率:

一般地,已知函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 x 1 x_1 x1 是其定义域中不同的两点,记 Δ x = x 1 − x 0 \Delta x=x_1-x_0 Δx=x1x0 Δ y = y 1 − y 0 = f ( x 1 ) − f ( x 0 ) = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=y_1-y_0=f(x_1)-f(x_0)=f(x_0+\Delta x)-f(x_0) Δy=y1y0=f(x1)f(x0)=f(x0+Δx)f(x0)

则当 Δ x ≠ 0 \Delta x\neq0 Δx=0 时, f ( x 0 + Δ x ) − f ( x 0 ) Δ x = Δ y Δ x \dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\dfrac{\Delta y}{\Delta x} Δxf(x0+Δx)f(x0)=ΔxΔy 称作函数在区间 [ x 0 , x 0 + Δ x ] [x_0,x_0+\Delta x] [x0,x0+Δx] (或 [ x 0 + Δ x , x 0 ] [x_0+\Delta x,x_0] [x0+Δx,x0])上的平均变化率。

瞬时变化率与导数:

设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 附近有定义,当自变量在 x = x 0 x=x_0 x=x0 附近改变量为 Δ x \Delta x Δx 时,函数值相应的改变, Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)

Δ x \Delta x Δx 趋近于 0 0 0 时,平均变化率会趋近于一个常数。设这个常数为 l l l,那么 l l l 就被称为函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的瞬时变化率。

Δ x \Delta x Δx 趋近于 0 0 0 时,平均变化率 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} Δxf(x0+Δx)f(x0) 趋近于常数 l l l 可以记作 lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = l \displaystyle\lim_{\Delta x \to 0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=l Δx0limΔxf(x0+Δx)f(x0)=l

函数在 x 0 x_0 x0 处的瞬时变化率,称为函数 f ( x ) f(x) f(x) x 0 x_0 x0 处的导数,记作 f ′ ( x 0 ) f \rq (x_0) f(x0)

这时称 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0 处可导。

于是上述变化过程可以记作 lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = f ′ ( x 0 ) \displaystyle\lim_{\Delta x \to 0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=f \rq (x_0) Δx0limΔxf(x0+Δx)f(x0)=f(x0)

可导与导函数:

如果函数 f ( x ) f(x) f(x) 在区间 ( a , b ) (a,b) (a,b) 内每一点都是可导的,则称函数 f ( x ) f(x) f(x) 在区间 ( a , b ) (a,b) (a,b) 内可导。

这样,对区间 ( a , b ) (a,b) (a,b) 内每一个值 x x x,都有一个确定的导数 f ′ ( x ) f \rq (x) f(x)

于是,在区间 ( a , b ) (a,b) (a,b) 内, f ′ ( x ) f \rq (x) f(x) 构成一个新的函数,我们把这个函数称为函数 y = f ( x ) y=f(x) y=f(x) 的导函数,记作 f ′ ( x ) f \rq (x) f(x) y ′ y \rq y

p.s:导函数通常称为导数。如果不特别指明某一点的导数,那么求导数指的就是求导函数。

运算与运算法则

运算:

( 1 ) (1) (1) f ( x ) = c f(x)=c f(x)=c,则 f ′ ( x ) = 0 f \rq (x)=0 f(x)=0

( 2 ) (2) (2) f ( x ) = x a f(x)=x^a f(x)=xa,则 f ′ ( x ) = a x a − 1 f \rq (x)=a x^{a-1} f(x)=axa1

( 3 ) (3) (3) f ( x ) = a x f(x)=a^x f(x)=ax,则 f ′ ( x ) = a x ln ⁡ a f \rq (x)=a^x \ln a f(x)=axlna

( 4 ) (4) (4) f ( x ) = log ⁡ a x f(x)=\log_a x f(x)=logax,则 f ′ ( x ) = 1 x ln ⁡ a f \rq (x)=\dfrac{1}{x \ln a} f(x)=xlna1

( 5 ) (5) (5) f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx,则 f ′ ( x ) = cos ⁡ x f \rq (x)=\cos x f(x)=cosx

( 6 ) (6) (6) f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx,则 f ′ ( x ) = − sin ⁡ x f \rq (x)=-\sin x f(x)=sinx

运算法则:

( f ( x ) ± g ( x ) ) ′ = f ′ ( x ) ± g ′ ( x ) (f(x) \pm g(x)) \rq = f \rq (x) \pm g \rq (x) (f(x)±g(x))=f(x)±g(x)

[ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)g(x)] \rq = f \rq (x) g(x) + f(x) g \rq (x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)

[ C f ( x ) ] ′ = C f ′ ( x ) [C f(x)] \rq = C f \rq (x) [Cf(x)]=Cf(x)

[ f ( x ) g ( x ) ] ′ = g ( x ) f ′ ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) ( g ( x ) ≠ 0 ) [\dfrac{f(x)}{g(x)}] \rq = \dfrac{g(x) f\rq(x)-f(x)g \rq(x)}{g^2(x)} (g(x) \neq 0) [g(x)f(x)]=g2(x)g(x)f(x)f(x)g(x)(g(x)=0)

复合函数求导:

对于可导函数 y = f ( u ) y=f(u) y=f(u) u = u ( x ) u=u(x) u=u(x) f x ′ = d f d x = d f d u × d u d x = f u ′ u x ′ f_x \rq=\dfrac{df}{dx}=\dfrac{df}{du} \times \dfrac{du}{dx}=f_u\rq u_x\rq fx=dxdf=dudf×dxdu=fuux

导数的应用

几何意义:

设函数 y = f ( x ) y=f(x) y=f(x) 的图像如图所示(曲线)。

AB为过点 A ( x 0 , f ( x 0 ) ) A(x_0,f(x_0)) A(x0,f(x0)) B ( x 0 + Δ x , f ( x 0 + Δ x ) ) B(x_0+\Delta x,f(x_0+\Delta x)) B(x0+Δx,f(x0+Δx)) 的一条割线。

由此可以得出,这条割线的斜率为 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = Δ y Δ x \dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\dfrac{\Delta y}{\Delta x} Δxf(x0+Δx)f(x0)=ΔxΔy。可知割线的斜率就是函数的平均变化率。

当点B沿曲线不断趋近于点A时,割线AB会绕着点A转动。当B与A重合时,AB会与AD重合。AD被称为函数 y = f ( x ) y=f(x) y=f(x) 在点A处的切线,即 lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = k A D \displaystyle\lim_{\Delta x \to 0}\dfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=k_{AD} Δx0limΔxf(x0+Δx)f(x0)=kAD

由导数的意义可知,曲线 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处的切线斜率为 f ′ ( x 0 ) f \rq (x_0) f(x0)

可能会考的两种题型:

题型一 曲线在某点的切线

由于函数 y = f ( x ) y=f(x) y=f(x) x = x 0 x=x_0 x=x0 处的导数 f ′ ( x 0 ) f \rq (x_0) f(x0) 的几何意义为曲线 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处的切线的斜率,所以我们就可以通过以下步骤求得切线方程:

( 1 ) (1) (1) 求出 y = f ( x ) y=f(x) y=f(x) x = x 0 x=x_0 x=x0 处的导数,即 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处的切线的斜率。

( 2 ) (2) (2) 在知道切点坐标与斜率的条件下,因为切线一定为一条直线,所以用一次函数的求法即可求得切线方程。

注意:若 y = f ( x ) y=f(x) y=f(x) 在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0)) 处的切线平行于 y y y 轴,那么切线方程为 x = x 0 x=x_0 x=x0

题型二 曲线过某点的切线

只需注意以下几点即可:

( 1 ) (1) (1) 曲线的切线不一定只与曲线有一个交点。

( 2 ) (2) (2) “曲线过某点的切线”与“曲线在某点的切线”是不同的概念。

( 3 ) (3) (3) “曲线在某点的切线”要么没有,要么只有一条。而“曲线过某点的切线”可能不止一条。

如何判断单调性:

如果函数 y = f ( x ) y=f(x) y=f(x) x x x 的某个开区间内,总有 f ′ ( x ) > 0 f \rq (x) > 0 f(x)>0,则 f ( x ) f(x) f(x) 在这个区间内是增函数。

如果函数 y = f ( x ) y=f(x) y=f(x) x x x 的某个开区间内,总有 f ′ ( x ) < 0 f \rq (x) < 0 f(x)<0,则 f ( x ) f(x) f(x) 在这个区间内是减函数。

用导数研究函数的极值:

已知函数 y = f ( x ) y=f(x) y=f(x),设函数 x 0 x_0 x0 是定义域内任意一点。如果对 x 0 x_0 x0 附近的所有点 x x x,都有 f ( x ) < f ( x 0 ) f(x)<f(x_0) f(x)<f(x0),则称函数 f ( x ) f(x) f(x) x 0 x_0 x0 处取最大值,并把 x 0 x_0 x0 称为函数 f ( x ) f(x) f(x) 的一个极大值点。

求函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b] 上的最大值与最小值的步骤如下:

( 1 ) (1) (1) 求函数 y = f ( x ) y=f(x) y=f(x) ( a , b ) (a,b) (a,b) 内的极值;

( 2 ) (2) (2) 求函数 y = f ( x ) y=f(x) y=f(x) 的极值,与端点处比较,就可以求出最大值与最小值。

一些题目

极限:

1. 1. 1. lim ⁡ x → 3 ( 4 x 2 − 5 x + 1 ) \displaystyle\lim_{x \to 3}(4x^2-5x+1) x3lim(4x25x+1)

解析:

由于函数是连续的,所以极值就在 x = 3 x=3 x=3 时取到。

故答案为 4 × 3 2 − 5 × 3 + 1 = 22 4 \times 3^2-5 \times 3+1=22 4×325×3+1=22

2. 2. 2. lim ⁡ x → 1 x 2 + 3 x − 1 2 x 4 − 5 \displaystyle\lim_{x \to 1}\dfrac{x^2+3x-1}{2x^4-5} x1lim2x45x2+3x1

解析:

由于函数是连续的,所以极值就在 x = 1 x=1 x=1 时取到。

故答案为 1 2 + 3 × 1 − 1 2 × 1 4 − 5 = − 1 \dfrac{1^2+3 \times 1-1}{2 \times 1^4-5}=-1 2×14512+3×11=1

3. 3. 3. lim ⁡ x → ∞ x 2 + 2 x − 3 x 2 − 1 \displaystyle\lim_{x \to \infty}\dfrac{x^2+2x-3}{x^2-1} xlimx21x2+2x3

解析:

直接取正无穷显然不可能,我们考虑对它进行化简。

原式 = lim ⁡ x → ∞ x + 3 x + 1 =\displaystyle\lim_{x \to \infty}\dfrac{x+3}{x+1} =xlimx+1x+3

= 1 + lim ⁡ x → ∞ 2 x + 1 =1+\displaystyle\lim_{x \to \infty}\dfrac{2}{x+1} =1+xlimx+12

这里由于分离常数后 1 1 1 为定值,所以可以直接提出来。

x x x 趋于无穷时, 2 x + 1 \dfrac{2}{x+1} x+12 会趋近于 0 0 0,故答案为 1 1 1

导数:

1. 1. 1. 求函数 f ( x ) = x 3 − 2 x f(x)=x^3-2x f(x)=x32x x = 1 x=1 x=1 附近的平均变化率,在 x = 1 x=1 x=1 处的瞬时变化率与导数。

解析:

直接套公式即可。

平均变化率即为 f ( 1 + Δ x ) − f ( 1 ) Δ x \dfrac{f(1+\Delta x)-f(1)}{\Delta x} Δxf(1+Δx)f(1),将它展开爆解即可。答案为 ( Δ x ) 2 + 3 ( Δ x ) + 1 (\Delta x)^2+3(\Delta x)+1 (Δx)2+3(Δx)+1

瞬时变化率即为导数,答案即为 f ′ ( 1 ) = lim ⁡ Δ x → 0 f ( 1 + Δ x ) − f ( 1 ) Δ x = ( Δ x ) 2 + 3 ( Δ x ) + 1 = 1 f \rq (1)=\displaystyle\lim_{\Delta x \to 0}\dfrac{f(1+\Delta x)-f(1)}{\Delta x}=(\Delta x)^2+3(\Delta x)+1=1 f(1)=Δx0limΔxf(1+Δx)f(1)=(Δx)2+3(Δx)+1=1

2. 2. 2. 函数 y = a x 4 + 1 y=ax^4+1 y=ax4+1 的图像与直线 y = 4 3 x y=\dfrac{4}{3}x y=34x 相切,则 a a a 的值为____。

解析:

先进行求导。

y ′ = 4 a x 3 y \rq=4ax^3 y=4ax3 y ′ = 4 3 y \rq=\dfrac{4}{3} y=34

那么我们设切点 A ( x 0 , y 0 ) A(x_0,y_0) A(x0,y0)

我们就会得到两个方程:

4 a x 0 3 = 4 3 4ax_0^3=\dfrac{4}{3} 4ax03=34 以及 4 3 x 0 = a x 0 4 + 1 \dfrac{4}{3}x_0=ax_0^4+1 34x0=ax04+1

解得 x 0 = 1 x_0=1 x0=1 a = 1 3 a=\dfrac{1}{3} a=31

3. 3. 3. 求函数 y = x 3 − 2 2 ( x − 1 ) 2 y=\dfrac{x^3-2}{2(x-1)^2} y=2(x1)2x32 的极大值。

解析:

先求导,过程省略了。

y ′ = ( x + 1 ) ( x − 2 ) 2 2 ( x − 1 ) 3 y \rq=\dfrac{(x+1)(x-2)^2}{2(x-1)^3} y=2(x1)3(x+1)(x2)2

要求极值,所以我们令 y ′ = 0 y \rq=0 y=0,解得 x 1 = − 1 , x 2 = 2 x_1=-1,x_2=2 x1=1,x2=2

分类讨论 x = − 1 x=-1 x=1 以及 x = 2 x=2 x=2 的情况即可。

( 1 ) x = − 1 (1) x=-1 (1)x=1 时, f ′ ( x ) f \rq (x) f(x) 会变号,存在极值,经过计算可得 x = − 1 , y = − 3 8 x=-1,y=-\dfrac{3}{8} x=1,y=83

( 2 ) x = 2 (2) x=2 (2)x=2 时, f ′ ( x ) f \rq (x) f(x) 不会变号,故不存在极值。

综上所述,极大值为 y = − 3 8 y=-\dfrac{3}{8} y=83,在 x = − 1 x=-1 x=1 时取到。

作者的后记

昨天刚第二次学导数,觉得自己学的不够牢固,于是突发奇想来写一篇学习笔记。

每一次看到别人学完新知识后都能记得很牢固,经过大佬们的推荐,听说学习笔记很有用,于是就来肝了一篇(其实也不算肝,用了4.5hrs,写了接近7k的文字量)。

当然,我觉得这篇学习笔记里面肯定是有很多不足的,所以还请大佬多多指教,谢谢观看!

2024.8.14 20:28

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值