[MIT]微积分重点 第十一课 对数函数和反三角函数的导数 学习笔记

1.对数函数的导数

首先回顾了之前学过的求导法则:加减、乘除和链式法则。下面的求导将用到链式求导法则和逆函数。
根据逆函数可以得到: f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f1(f(x))=x f ( f − 1 ( y ) ) = y f(f^{-1}(y))=y f(f1(y))=y 。对其进行链式法则求导就可以得到逆函数的导数。
在这里插入图片描述

复习下逆函数:
例: y = a x + b = f ( x ) y=ax+b=f(x) y=ax+b=f(x) 。求得逆函数为: x = y − b a = f − 1 ( y ) x=\frac{y-b}{a}=f^{-1}(y) x=ayb=f1(y)
可以看到原函数 f ( x ) f(x) f(x)先乘再加;逆函数 f − 1 ( y ) f^{-1}(y) f1(y)先减再除

下面正式开始求对数函数的导数:
使用 y = e x = f ( x ) y=e^x=f(x) y=ex=f(x) 构造前面所说的函数: f − 1 ( f ( x ) ) = ln ⁡ ( e x ) = x f^{-1}(f(x))=\ln(e^x)=x f1(f(x))=ln(ex)=x ,接着对两边同时求导:
d ⁡ d ⁡ x ( ln ⁡ ( e x ) ) = d ⁡ d ⁡ x ( x ) d ⁡ d ⁡ y ( ln ⁡ y ) d ⁡ d ⁡ x ( e x ) = 1 d ⁡ d ⁡ y ( ln ⁡ y ) e x = 1 d ⁡ d ⁡ y ( ln ⁡ y ) = 1 e x d ⁡ d ⁡ y ( ln ⁡ y ) = 1 y \begin{aligned} &\frac{\operatorname d}{\operatorname d x}(\ln(e^x))=\frac{\operatorname d}{\operatorname d x}(x) \\[2ex] &\frac{\operatorname d}{\operatorname d y}(\ln y)\frac{\operatorname d}{\operatorname d x}(e^x)=1 \\[2ex] &\frac{\operatorname d}{\operatorname d y}(\ln y)e^x=1 \\[2ex] &\frac{\operatorname d}{\operatorname d y}(\ln y)=\frac{1}{e^x} \\[2ex] &\frac{\operatorname d}{\operatorname d y}(\ln y)=\frac{1}{y} \\[2ex] \end{aligned} dxd(ln(ex))=dxd(x)dyd(lny)dxd(ex)=1dyd(lny)ex=1dyd(lny)=ex1dyd(lny)=y1
在这里插入图片描述

求导时,没有幂函数可以得到 − 1 -1 1 次方(幂函数的 n = 0 n=0 n=0 时,右侧等于 0 0 0 ,得不到 − 1 -1 1 次方)。这就像导数列表中的一个遗漏,现在终于补充完整了。观察对数函数及其导数发现,对数曲线时在增长,但是其斜率在减小,当 x x x 很大时,它几乎不怎么增长了。

使用 x = ln ⁡ y = f − 1 ( y ) x=\ln y=f^{-1}(y) x=lny=f1(y) 构造前面所说的另一函数: f ( f − 1 ( y ) ) = e ln ⁡ y = y f(f^{-1}(y))=e^{\ln y}=y f(f1(y))=elny=y ,接着对两边同时求导:
d ⁡ d ⁡ y ( e ln ⁡ y ) = d ⁡ d ⁡ y ( y ) e ln ⁡ y d ⁡ d ⁡ y ( ln ⁡ y ) = 1 y d ⁡ d ⁡ y ( ln ⁡ y ) = 1 d ⁡ d ⁡ y ( ln ⁡ y ) = 1 y \begin{aligned} &\frac{\operatorname d}{\operatorname d y}(e^{\ln y})=\frac{\operatorname d}{\operatorname d y}(y) \\[2ex] &e^{\ln y}\frac{\operatorname d}{\operatorname d y}({\ln y})=1 \\[2ex] &y\frac{\operatorname d}{\operatorname d y}({\ln y})=1 \\[2ex] &\frac{\operatorname d}{\operatorname d y}({\ln y})=\frac{1}{y} \\[2ex] \end{aligned} dyd(elny)=dyd(y)elnydyd(lny)=1ydyd(lny)=1dyd(lny)=y1
与之前求的结果相同。

2.反三角函数的导数

2.1 sin ⁡ − 1 y \sin^{-1}y sin1y 的导数

同样,使用 x = sin ⁡ − 1 y x=\sin^{-1}y x=sin1y 构造函数: y = sin ⁡ ( sin ⁡ − 1 y ) y=\sin(\sin^{-1}y) y=sin(sin1y) ,接着对两边同时求导:
1 = cos ⁡ ( sin ⁡ − 1 y ) d ⁡ d ⁡ y ( sin ⁡ − 1 y ) 1 = 1 − y 2 d ⁡ d ⁡ y ( sin ⁡ − 1 y ) d ⁡ d ⁡ y ( sin ⁡ − 1 y ) = 1 1 − y 2 \begin{aligned} &1=\cos(\sin^{-1}y)\frac{\operatorname d}{\operatorname d y}(\sin^{-1}y) \\[2ex] &1=\sqrt{1-y^2}\frac{\operatorname d}{\operatorname d y}(\sin^{-1}y) \\[2ex] &\frac{\operatorname d}{\operatorname d y}(\sin^{-1}y)=\frac{1}{\sqrt{1-y^2}} \\[2ex] \end{aligned} 1=cos(sin1y)dyd(sin1y)1=1y2 dyd(sin1y)dyd(sin1y)=1y2 1
cos ⁡ ( sin ⁡ − 1 y ) \cos(\sin^{-1}y) cos(sin1y) 为什么等于 1 − y 2 \sqrt{1-y^2} 1y2 下图有解释:
在这里插入图片描述

2.2 cos ⁡ − 1 y \cos^{-1}y cos1y 的导数

使用 x = cos ⁡ − 1 y x=\cos^{-1}y x=cos1y 构造函数: y = cos ⁡ ( cos ⁡ − 1 y ) y=\cos(\cos^{-1}y) y=cos(cos1y) ,接着对两边同时求导:
1 = − sin ⁡ ( cos ⁡ − 1 y ) d ⁡ d ⁡ y ( cos ⁡ − 1 y ) 1 = − 1 − y 2 d ⁡ d ⁡ y ( cos ⁡ − 1 y ) d ⁡ d ⁡ y ( cos ⁡ − 1 y ) = − 1 1 − y 2 \begin{aligned} &1=-\sin(\cos^{-1}y)\frac{\operatorname d}{\operatorname d y}(\cos^{-1}y) \\[2ex] &1=-\sqrt{1-y^2}\frac{\operatorname d}{\operatorname d y}(\cos^{-1}y) \\[2ex] &\frac{\operatorname d}{\operatorname d y}(\cos^{-1}y)=-\frac{1}{\sqrt{1-y^2}} \\[2ex] \end{aligned} 1=sin(cos1y)dyd(cos1y)1=1y2 dyd(cos1y)dyd(cos1y)=1y2 1

根据前面求得的反三角函数的导数,我们知道函数 y = sin ⁡ − 1 x + cos ⁡ − 1 x y=\sin^{-1}x + \cos^{-1}x y=sin1x+cos1x ,其导数为 0 0 0 ,说明函数 y y y 为常函数。如下图所示, y = sin ⁡ − 1 x + cos ⁡ − 1 x = θ + α = 90 ° = π / 2 y=\sin^{-1}x + \cos^{-1}x=\theta + \alpha=90\degree=\pi/2 y=sin1x+cos1x=θ+α=90°=π/2
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值