[MIT]微积分重点 第六课 sinx和cosx的导数 学习笔记

这节课先看了教授的视频没看懂,后来又去看了《普林斯顿微积分读本》看懂了,再看教授的课程才明白,这里就按照我的理解讲下《普林斯顿微积分读本》里的证明过程。

1.求 sin ⁡ x \sin x sinx 的导数

f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx ,则:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x cos ⁡ Δ x + cos ⁡ x sin ⁡ Δ x − sin ⁡ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x ( cos ⁡ Δ x − 1 ) + cos ⁡ x sin ⁡ Δ x Δ x = lim ⁡ Δ x → 0 [ sin ⁡ x ( cos ⁡ Δ x − 1 ) Δ x + cos ⁡ x sin ⁡ Δ x Δ x ] = sin ⁡ x lim ⁡ Δ x → 0 ( cos ⁡ Δ x − 1 ) Δ x + cos ⁡ x lim ⁡ Δ x → 0 sin ⁡ Δ x Δ x \begin{aligned} f'(x)&=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\sin x\cos\Delta x+\cos x\sin \Delta x-\sin x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\sin x(\cos\Delta x-1)+\cos x\sin \Delta x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\left[\sin x\frac{(\cos\Delta x-1)}{\Delta x}+\cos x\frac{\sin \Delta x}{\Delta x}\right] \\[2ex] &=\sin x\lim_{\Delta x \to 0}\frac{(\cos\Delta x-1)}{\Delta x}+\cos x\lim_{\Delta x \to 0}\frac{\sin \Delta x}{\Delta x} \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxsin(x+Δx)sinx=Δx0limΔxsinxcosΔx+cosxsinΔxsinx=Δx0limΔxsinx(cosΔx1)+cosxsinΔx=Δx0lim[sinxΔx(cosΔx1)+cosxΔxsinΔx]=sinxΔx0limΔx(cosΔx1)+cosxΔx0limΔxsinΔx
到这里就计算不下去了,我们需知道当 Δ x \Delta x Δx 趋于0时, ( cos ⁡ Δ x − 1 ) Δ x \frac{(\cos\Delta x-1)}{\Delta x} Δx(cosΔx1) 的极限和 sin ⁡ Δ x Δ x \frac{\sin \Delta x}{\Delta x} ΔxsinΔx 的极限。

2. 求 sin ⁡ x x \frac{\sin x}{x} xsinx 在0处的极限

如下图所示, O A = 1 OA=1 OA=1 ∠ A O B = x \angle AOB=x AOB=x , 则 ∣ A C ∣ = sin ⁡ x |AC|=\sin x AC=sinx ∣ D B ∣ = tan ⁡ x |DB|=\tan x DB=tanx
在这里插入图片描述

∵ S △ O A B < S 扇 形 O A B < S △ O D B ∴ sin ⁡ x 2 < x 2 < tan ⁡ x 2 ∴ sin ⁡ x < x < tan ⁡ x x ∈ [ 0 , π 2 ] ∴ 1 sin ⁡ x > 1 x > 1 tan ⁡ x x ∈ [ 0 , π 2 ] ∴ 1 > sin ⁡ x x > cos ⁡ x x ∈ [ 0 , π 2 ] ∴ cos ⁡ x < sin ⁡ x x < 1 x ∈ [ 0 , π 2 ] lim ⁡ x → 0 cos ⁡ x = 1 , lim ⁡ x → 0 1 = 1 \because S_{\triangle OAB}<S_{扇形 OAB}<S_{\triangle ODB} \\[2ex] \therefore\frac{\sin x}{2}<\frac{x}{2}<\frac{\tan x}{2} \\[2ex] \therefore\sin x<x<\tan x \quad x\in[0,\frac{\pi}{2}] \\[2ex] \therefore\frac{1}{\sin x}>\frac{1}{x}>\frac{1}{\tan x}\quad x\in[0,\frac{\pi}{2}] \\[2ex] \therefore1>\frac{\sin x}{x}>\cos x\quad x\in[0,\frac{\pi}{2}] \\[2ex] \therefore\cos x<\frac{\sin x}{x}<1\quad x\in[0,\frac{\pi}{2}] \\[2ex] \lim_{x \to 0}\cos x=1,\lim_{x \to 0}1=1 SOAB<SOAB<SODB2sinx<2x<2tanxsinx<x<tanxx[0,2π]sinx1>x1>tanx1x[0,2π]1>xsinx>cosxx[0,2π]cosx<xsinx<1x[0,2π]x0limcosx=1,x0lim1=1
根据三明治定理(夹逼定理),得到:
lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0}\frac{\sin x}{x}=1 x0limxsinx=1
这里,教授是分别证明 sin ⁡ x < x \sin x<x sinx<x tan ⁡ x > x \tan x > x tanx>x ,最后也是使用夹逼定理得证。

3. 求 ( cos ⁡ x − 1 ) x \frac{(\cos x-1)}{x} x(cosx1) 在0处的极限

lim ⁡ x → 0 cos ⁡ x − 1 x = lim ⁡ x → 0 ( cos ⁡ x − 1 ) ( cos ⁡ x + 1 ) x ( cos ⁡ x + 1 ) = lim ⁡ x → 0 cos ⁡ 2 x − 1 x ( cos ⁡ x + 1 ) = lim ⁡ x → 0 1 − sin ⁡ 2 x − 1 x ( cos ⁡ x + 1 ) = lim ⁡ x → 0 − sin ⁡ 2 x x ( cos ⁡ x + 1 ) = lim ⁡ x → 0 [ − sin ⁡ x ⋅ sin ⁡ x x ⋅ 1 ( cos ⁡ x + 1 ) ] = − 0 ⋅ 1 ⋅ 1 1 + 1 = 0 \begin{aligned} \lim_{x \to 0}\frac{\cos x-1}{x}&=\lim_{x \to 0}\frac{(\cos x-1)(\cos x+1)}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}\frac{\cos^2x-1}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}\frac{1-\sin^2x-1}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}\frac{-\sin^2x}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}[-\sin x\cdot\frac{\sin x}{x}\cdot\frac{1}{(\cos x+1)}] \\[2ex] &=-0\cdot1\cdot\frac{1}{1+1} \\[2ex] &=0 \end{aligned} x0limxcosx1=x0limx(cosx+1)(cosx1)(cosx+1)=x0limx(cosx+1)cos2x1=x0limx(cosx+1)1sin2x1=x0limx(cosx+1)sin2x=x0lim[sinxxsinx(cosx+1)1]=011+11=0
这里,教授用了“捷径”,求 ( cos ⁡ x − 1 ) x \frac{(\cos x-1)}{x} x(cosx1) 在0处的极限,就是求 cos ⁡ x \cos x cosx 在0处的导数,由图像可知,此处为极大值点,其导数为0。

4.再求 sin ⁡ x \sin x sinx 的导数

我们已经知道当 Δ x \Delta x Δx 趋于0时, ( cos ⁡ Δ x − 1 ) Δ x \frac{(\cos\Delta x-1)}{\Delta x} Δx(cosΔx1) 的极限为0和 sin ⁡ Δ x Δ x \frac{\sin \Delta x}{\Delta x} ΔxsinΔx 的极限为1,继续1小节中的求导:
f ′ ( x ) = sin ⁡ x lim ⁡ Δ x → 0 ( cos ⁡ Δ x − 1 ) Δ x + cos ⁡ x lim ⁡ Δ x → 0 sin ⁡ Δ x Δ x = sin ⁡ x ⋅ 0 + cos ⁡ x ⋅ 1 = cos ⁡ x \begin{aligned} f'(x)&=\sin x\lim_{\Delta x \to 0}\frac{(\cos\Delta x-1)}{\Delta x}+\cos x\lim_{\Delta x \to 0}\frac{\sin \Delta x}{\Delta x} \\[2ex] &=\sin x\cdot0+\cos x\cdot1 \\ &=\cos x \end{aligned} f(x)=sinxΔx0limΔx(cosΔx1)+cosxΔx0limΔxsinΔx=sinx0+cosx1=cosx
这里已经得到 sin ⁡ x \sin x sinx 的导数为 cos ⁡ x \cos x cosx

5.求 cos ⁡ x \cos x cosx 的导数

同样,令 f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx ,则:
f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim ⁡ Δ x → 0 cos ⁡ ( x + Δ x ) − cos ⁡ x Δ x = lim ⁡ Δ x → 0 cos ⁡ x cos ⁡ Δ x − sin ⁡ x sin ⁡ Δ x − cos ⁡ x Δ x = lim ⁡ Δ x → 0 cos ⁡ x ( cos ⁡ Δ x − 1 ) − sin ⁡ x sin ⁡ Δ x Δ x = lim ⁡ Δ x → 0 [ cos ⁡ x ( cos ⁡ Δ x − 1 ) Δ x − sin ⁡ x sin ⁡ Δ x Δ x ] = cos ⁡ x lim ⁡ Δ x → 0 ( cos ⁡ Δ x − 1 ) Δ x − sin ⁡ x lim ⁡ Δ x → 0 sin ⁡ Δ x Δ x = cos ⁡ x ⋅ 0 − sin ⁡ x ⋅ 1 = − sin ⁡ x \begin{aligned} f'(x)&=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\cos(x+\Delta x)-\cos x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\cos x\cos\Delta x-\sin x\sin \Delta x-\cos x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\cos x(\cos\Delta x-1)-\sin x\sin \Delta x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\left[\cos x\frac{(\cos\Delta x-1)}{\Delta x}-\sin x\frac{\sin \Delta x}{\Delta x}\right] \\[2ex] &=\cos x\lim_{\Delta x \to 0}\frac{(\cos\Delta x-1)}{\Delta x}-\sin x\lim_{\Delta x \to 0}\frac{\sin \Delta x}{\Delta x} \\[2ex] &=\cos x\cdot0-\sin x\cdot1 \\ &=-\sin x \end{aligned} f(x)=Δx0limΔxf(x+Δx)f(x)=Δx0limΔxcos(x+Δx)cosx=Δx0limΔxcosxcosΔxsinxsinΔxcosx=Δx0limΔxcosx(cosΔx1)sinxsinΔx=Δx0lim[cosxΔx(cosΔx1)sinxΔxsinΔx]=cosxΔx0limΔx(cosΔx1)sinxΔx0limΔxsinΔx=cosx0sinx1=sinx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值