这节课先看了教授的视频没看懂,后来又去看了《普林斯顿微积分读本》看懂了,再看教授的课程才明白,这里就按照我的理解讲下《普林斯顿微积分读本》里的证明过程。
1.求 sin x \sin x sinx 的导数
令
f
(
x
)
=
sin
x
f(x)=\sin x
f(x)=sinx ,则:
f
′
(
x
)
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
−
f
(
x
)
Δ
x
=
lim
Δ
x
→
0
sin
(
x
+
Δ
x
)
−
sin
x
Δ
x
=
lim
Δ
x
→
0
sin
x
cos
Δ
x
+
cos
x
sin
Δ
x
−
sin
x
Δ
x
=
lim
Δ
x
→
0
sin
x
(
cos
Δ
x
−
1
)
+
cos
x
sin
Δ
x
Δ
x
=
lim
Δ
x
→
0
[
sin
x
(
cos
Δ
x
−
1
)
Δ
x
+
cos
x
sin
Δ
x
Δ
x
]
=
sin
x
lim
Δ
x
→
0
(
cos
Δ
x
−
1
)
Δ
x
+
cos
x
lim
Δ
x
→
0
sin
Δ
x
Δ
x
\begin{aligned} f'(x)&=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\sin(x+\Delta x)-\sin x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\sin x\cos\Delta x+\cos x\sin \Delta x-\sin x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\sin x(\cos\Delta x-1)+\cos x\sin \Delta x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\left[\sin x\frac{(\cos\Delta x-1)}{\Delta x}+\cos x\frac{\sin \Delta x}{\Delta x}\right] \\[2ex] &=\sin x\lim_{\Delta x \to 0}\frac{(\cos\Delta x-1)}{\Delta x}+\cos x\lim_{\Delta x \to 0}\frac{\sin \Delta x}{\Delta x} \end{aligned}
f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxsin(x+Δx)−sinx=Δx→0limΔxsinxcosΔx+cosxsinΔx−sinx=Δx→0limΔxsinx(cosΔx−1)+cosxsinΔx=Δx→0lim[sinxΔx(cosΔx−1)+cosxΔxsinΔx]=sinxΔx→0limΔx(cosΔx−1)+cosxΔx→0limΔxsinΔx
到这里就计算不下去了,我们需知道当
Δ
x
\Delta x
Δx 趋于0时,
(
cos
Δ
x
−
1
)
Δ
x
\frac{(\cos\Delta x-1)}{\Delta x}
Δx(cosΔx−1) 的极限和
sin
Δ
x
Δ
x
\frac{\sin \Delta x}{\Delta x}
ΔxsinΔx 的极限。
2. 求 sin x x \frac{\sin x}{x} xsinx 在0处的极限
如下图所示,
O
A
=
1
OA=1
OA=1 ,
∠
A
O
B
=
x
\angle AOB=x
∠AOB=x , 则
∣
A
C
∣
=
sin
x
|AC|=\sin x
∣AC∣=sinx ,
∣
D
B
∣
=
tan
x
|DB|=\tan x
∣DB∣=tanx 。
∵
S
△
O
A
B
<
S
扇
形
O
A
B
<
S
△
O
D
B
∴
sin
x
2
<
x
2
<
tan
x
2
∴
sin
x
<
x
<
tan
x
x
∈
[
0
,
π
2
]
∴
1
sin
x
>
1
x
>
1
tan
x
x
∈
[
0
,
π
2
]
∴
1
>
sin
x
x
>
cos
x
x
∈
[
0
,
π
2
]
∴
cos
x
<
sin
x
x
<
1
x
∈
[
0
,
π
2
]
lim
x
→
0
cos
x
=
1
,
lim
x
→
0
1
=
1
\because S_{\triangle OAB}<S_{扇形 OAB}<S_{\triangle ODB} \\[2ex] \therefore\frac{\sin x}{2}<\frac{x}{2}<\frac{\tan x}{2} \\[2ex] \therefore\sin x<x<\tan x \quad x\in[0,\frac{\pi}{2}] \\[2ex] \therefore\frac{1}{\sin x}>\frac{1}{x}>\frac{1}{\tan x}\quad x\in[0,\frac{\pi}{2}] \\[2ex] \therefore1>\frac{\sin x}{x}>\cos x\quad x\in[0,\frac{\pi}{2}] \\[2ex] \therefore\cos x<\frac{\sin x}{x}<1\quad x\in[0,\frac{\pi}{2}] \\[2ex] \lim_{x \to 0}\cos x=1,\lim_{x \to 0}1=1
∵S△OAB<S扇形OAB<S△ODB∴2sinx<2x<2tanx∴sinx<x<tanxx∈[0,2π]∴sinx1>x1>tanx1x∈[0,2π]∴1>xsinx>cosxx∈[0,2π]∴cosx<xsinx<1x∈[0,2π]x→0limcosx=1,x→0lim1=1
根据三明治定理(夹逼定理),得到:
lim
x
→
0
sin
x
x
=
1
\lim_{x \to 0}\frac{\sin x}{x}=1
x→0limxsinx=1
这里,教授是分别证明
sin
x
<
x
\sin x<x
sinx<x 和
tan
x
>
x
\tan x > x
tanx>x ,最后也是使用夹逼定理得证。
3. 求 ( cos x − 1 ) x \frac{(\cos x-1)}{x} x(cosx−1) 在0处的极限
lim
x
→
0
cos
x
−
1
x
=
lim
x
→
0
(
cos
x
−
1
)
(
cos
x
+
1
)
x
(
cos
x
+
1
)
=
lim
x
→
0
cos
2
x
−
1
x
(
cos
x
+
1
)
=
lim
x
→
0
1
−
sin
2
x
−
1
x
(
cos
x
+
1
)
=
lim
x
→
0
−
sin
2
x
x
(
cos
x
+
1
)
=
lim
x
→
0
[
−
sin
x
⋅
sin
x
x
⋅
1
(
cos
x
+
1
)
]
=
−
0
⋅
1
⋅
1
1
+
1
=
0
\begin{aligned} \lim_{x \to 0}\frac{\cos x-1}{x}&=\lim_{x \to 0}\frac{(\cos x-1)(\cos x+1)}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}\frac{\cos^2x-1}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}\frac{1-\sin^2x-1}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}\frac{-\sin^2x}{x(\cos x+1)} \\[2ex] &=\lim_{x \to 0}[-\sin x\cdot\frac{\sin x}{x}\cdot\frac{1}{(\cos x+1)}] \\[2ex] &=-0\cdot1\cdot\frac{1}{1+1} \\[2ex] &=0 \end{aligned}
x→0limxcosx−1=x→0limx(cosx+1)(cosx−1)(cosx+1)=x→0limx(cosx+1)cos2x−1=x→0limx(cosx+1)1−sin2x−1=x→0limx(cosx+1)−sin2x=x→0lim[−sinx⋅xsinx⋅(cosx+1)1]=−0⋅1⋅1+11=0
这里,教授用了“捷径”,求
(
cos
x
−
1
)
x
\frac{(\cos x-1)}{x}
x(cosx−1) 在0处的极限,就是求
cos
x
\cos x
cosx 在0处的导数,由图像可知,此处为极大值点,其导数为0。
4.再求 sin x \sin x sinx 的导数
我们已经知道当
Δ
x
\Delta x
Δx 趋于0时,
(
cos
Δ
x
−
1
)
Δ
x
\frac{(\cos\Delta x-1)}{\Delta x}
Δx(cosΔx−1) 的极限为0和
sin
Δ
x
Δ
x
\frac{\sin \Delta x}{\Delta x}
ΔxsinΔx 的极限为1,继续1小节中的求导:
f
′
(
x
)
=
sin
x
lim
Δ
x
→
0
(
cos
Δ
x
−
1
)
Δ
x
+
cos
x
lim
Δ
x
→
0
sin
Δ
x
Δ
x
=
sin
x
⋅
0
+
cos
x
⋅
1
=
cos
x
\begin{aligned} f'(x)&=\sin x\lim_{\Delta x \to 0}\frac{(\cos\Delta x-1)}{\Delta x}+\cos x\lim_{\Delta x \to 0}\frac{\sin \Delta x}{\Delta x} \\[2ex] &=\sin x\cdot0+\cos x\cdot1 \\ &=\cos x \end{aligned}
f′(x)=sinxΔx→0limΔx(cosΔx−1)+cosxΔx→0limΔxsinΔx=sinx⋅0+cosx⋅1=cosx
这里已经得到
sin
x
\sin x
sinx 的导数为
cos
x
\cos x
cosx 。
5.求 cos x \cos x cosx 的导数
同样,令
f
(
x
)
=
cos
x
f(x)=\cos x
f(x)=cosx ,则:
f
′
(
x
)
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
−
f
(
x
)
Δ
x
=
lim
Δ
x
→
0
cos
(
x
+
Δ
x
)
−
cos
x
Δ
x
=
lim
Δ
x
→
0
cos
x
cos
Δ
x
−
sin
x
sin
Δ
x
−
cos
x
Δ
x
=
lim
Δ
x
→
0
cos
x
(
cos
Δ
x
−
1
)
−
sin
x
sin
Δ
x
Δ
x
=
lim
Δ
x
→
0
[
cos
x
(
cos
Δ
x
−
1
)
Δ
x
−
sin
x
sin
Δ
x
Δ
x
]
=
cos
x
lim
Δ
x
→
0
(
cos
Δ
x
−
1
)
Δ
x
−
sin
x
lim
Δ
x
→
0
sin
Δ
x
Δ
x
=
cos
x
⋅
0
−
sin
x
⋅
1
=
−
sin
x
\begin{aligned} f'(x)&=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\cos(x+\Delta x)-\cos x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\cos x\cos\Delta x-\sin x\sin \Delta x-\cos x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\frac{\cos x(\cos\Delta x-1)-\sin x\sin \Delta x}{\Delta x} \\[2ex] &=\lim_{\Delta x \to 0}\left[\cos x\frac{(\cos\Delta x-1)}{\Delta x}-\sin x\frac{\sin \Delta x}{\Delta x}\right] \\[2ex] &=\cos x\lim_{\Delta x \to 0}\frac{(\cos\Delta x-1)}{\Delta x}-\sin x\lim_{\Delta x \to 0}\frac{\sin \Delta x}{\Delta x} \\[2ex] &=\cos x\cdot0-\sin x\cdot1 \\ &=-\sin x \end{aligned}
f′(x)=Δx→0limΔxf(x+Δx)−f(x)=Δx→0limΔxcos(x+Δx)−cosx=Δx→0limΔxcosxcosΔx−sinxsinΔx−cosx=Δx→0limΔxcosx(cosΔx−1)−sinxsinΔx=Δx→0lim[cosxΔx(cosΔx−1)−sinxΔxsinΔx]=cosxΔx→0limΔx(cosΔx−1)−sinxΔx→0limΔxsinΔx=cosx⋅0−sinx⋅1=−sinx