A very hard mathematic problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2268 Accepted Submission(s): 683
Problem Description
Haoren is very good at solving mathematic problems. Today he is working a problem like this:
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Input
There are multiple test cases.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
Output
Output the total number of solutions in a line for each test case.
Sample Input
9 53 6 0
Sample Output
1 1 0Hint9 = 1^2 + 2^2 + 1 * 2 * 2 53 = 2^3 + 3^3 + 2 * 3 * 3#include<iostream> #include<cmath> using namespace std; int main() { int x,y,z,k,ans; while(cin>>k,k) { ans=0; for(z=2;z<31;z++) { y=(int)(pow((double)k,1.0/z));//求解k开n次方 for(x=1;x<y;) { __int64 temp=x*y*z+(__int64)(pow((double)x,(double)z)+pow((double)y,(double)z)+0.5); if(temp>k) y--; else if(temp<k) x++; else {x++;y--;ans++;} } } printf("%d\n",ans); } return 520; }