网络流 - Edmond-Karp 小讲 【 理解 + 例题 】 更新 ing...

    希望每天晚上在机房,可以去不断地提升自己吧,也真的希望,可以像学长、六大神那样 牛!

    概念:

    增广路: 从源点到汇点的一条简单路,如果路上的每条边(u,v)的可改进量均大于0,则称这条路为一条增广路。

    可行弧:在EK算法中指可从u到v增加流量(也就是容量不为0)。

    汇点: 只进不出的点。

    源点: 只出不进的点,在建图的时候,可以先虚拟出一个源点,不管题目中有几个。

    思路:

    EK算法就是通过bfs ,找出一条可以最短的可行路,再去不断地找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流。在程序实现过程中,通过减少容量的方法来限制可增数的大小。

   另外一点需要注意的是,对反向弧的作用和理解,实在理解不了的话,其它部分一定要去理解,这里贴一下其它巨巨的讲解。

   --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

   下面这个网络流模型:(delta 即可增加的流量 )

   

    我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

   

    这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

    但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。
    那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。


    而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

    在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。

  
    我们直接来看它是如何解决的:
 
    我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

   

    这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

   

    那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

    事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

    这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。

    --------------------------------------------------------------------------------------------------------------------------------------------------

    例题 :

    1. POJ  1273  Drainage Ditches  链接: http://poj.org/problem?id=1273

     这道题可以说是一道入门的网络流的题目,今天下午到现在,才弄明白,在群里问了好久,也没人理我-。-   注意一下细节和思路,不会多多去模拟一下,然后再去找几道题目做一做、

   

#include <iostream>
#include <queue>
#include <string.h>
#include <cstdio>
using namespace std;
const int maxn = 250;
const int inf = 0x7fffffff;

int r[maxn][maxn]; // 构造初始的网络
int pre[maxn];
bool vis[maxn];
int n, m;

// 判断能否形成一条可行路
bool bfs(int s, int t)
{
	int p;
	queue<int> q;
	memset(pre, -1, sizeof(pre));
	memset(vis, 0, sizeof(vis));
	pre[s] = s;
	vis[s] = 1;
	q.push(s);
	while(!q.empty())
    {
        p = q.front();
        q.pop();
        ///printf("%d     lalala\n", p);  我在模拟的时候,便于理解 有三个斜杠的、
        for(int i = 1; i <= n; i ++)
        {
            if(r[p][i] > 0 && !vis[i])  // 我在这里卡了超级久、、
            {
                pre[i] = p;
                vis[i] = 1;
                if(i == t)
                    return true; //如果已经到达汇点,说明存在增广路径返回true
                q.push(i);  //如果没有连接到汇点,一直到遍历结束
            }
        }
        ///printf("本次查找还没结束\n");
    }
    return false;
}

int EK(int s, int t)
{
    int flow = 0;
    int d;
    while(bfs(s, t))
    {
        d = inf;
        for(int i = t; i != s; i = pre[i])
        {
            if(d >= r[pre[i]][i])
                d = r[pre[i]][i];  //找可行路中的最小容量
        }
        for(int i = t; i != s; i = pre[i])
        {
            r[pre[i]][i] -= d;  
            r[i][pre[i]] += d; // 反向弧的处理,我觉得如果现在没弄懂,可以先放着
        }
        flow += d;
    }
    return flow;
}

int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        int u, v, w;
        memset(r, 0, sizeof(r));
        for(int i = 0; i < m; i ++)
        {
            scanf("%d%d%d", &u, &v, &w);
            r[u][v] += w;
        }
        printf("%d\n", EK(1, n));
    }
    return 0;
}








   

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值