MindSpore实现图像分类之数据处理部分

本文介绍了使用MindSpore进行图像分类时的数据处理步骤,包括加载CIFAR-10数据集,应用数据增强如随机裁剪、水平翻转、归一化等,以及数据的混洗、批处理和重复操作,以增强模型的鲁棒性。
摘要由CSDN通过智能技术生成

简单介绍下图片分类模型的日常用处:例如给定数字图像,判断图像所属的类别:猫、狗、飞机、汽车等等。如果用函数来表示这个过程如下:

def classify(image):

   label = model(image)

   return label

  1. 首先需要准备好本次演示使用的CIFAR-10数据集,可从MindSpore官网教程的实现图片分类页面中下载,数据集简介如下。

    MindSpore实现图像分类之数据处理部分

  2. 进入本次正题,处理数据集,下面是具体的操作说明和代码实现

    先将数据预加载出来和预处理

    加载数据集

    数据加载可以通过内置数据集格式Cifar10Dataset接口完成。

    cifar_ds = ds.Cifar10Dataset(data_home)

    数据增强

    数据增强主要是对数据进行归一化和丰富数据样本数量,调用map方法在图片上执行增强操作:

    resize_height = 224

    resize_width = 224

    rescale = 1.0 / 255.0

    shift = 0.0

    # define map operations

    random_crop_op = C.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT

    random_horizontal_op = C.RandomHorizontalFlip()

    resize_op &#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值