在服务器上配置Anaconda以及简单使用

序言

        最近再开始学习机器学习,作为一个小白,才刚刚去触摸这块领域,是让我真的很是难受,但是完事开头难,相信像我这样的孩子不在少数,作为入门机器学习或早或晚都会做的一件事情,配置Anaconda是不可或缺的,故以此文记下我配置Anaconda的一些过程。

什么是Anaconda?

        官方宣称:最受欢迎的Python数据科学平台。

优势:

  • 提供包管理与环境管理的功能(conda命令)
  • 预装好了conda,某个版本的python,众多packages,科学计算工具等等(故也算是python的一种发行版)

还有MiniConda,它只包含conda和python以及相关的依赖项,所需空间比Anaconda要小得多

conda:

        提供包管理与环境管理的功能,其设计理念就是:几乎所有的工具、第三方包都当做package对待,甚至包括python和conda自身! 因此,conda打破了包管理与环境管理的约束,能非常方便地安装各种版本python、各种package并方便地切换。

基于服务器上Linux系统安装Anaconda

我所用服务器上使用的系统为Ubuntu16.04,所以其下载及安装可以完全参照Linux系统的做法

服务器登录:

        由于我所使用的服务器是不在本地的,且只能内网访问,故只能使用VPN远程连接,以下为VPN连接方式:
1.下载所需VPN并安装
2.打开连接:
在这里插入图片描述

如图输入你的已知信息即可连接
3.连接服务器:

因为服务器上Linux系统给分配了好几个用户出来,且授予了登录权限,故其登录有超级管理员登录,以及普通用户登录两种方式

Linux中root用户连接:

其中,ssh为连接方式,22为服务器端口,@root在此可以省略,xx.xxx.xx.xxx为你服务器的IP地址

在这里插入图片描述

Enter键后会出现请你输入登录密码的提示,输入相应密码既可登录服务器,如图如果相应连接地址不存在服务器,可能就会等待很长时间无反应

普通用户登录:
打开cmd,按找如图所示,连接服务器

其中,Jiang_3@后面是服务器的IP地址,Jiang_3是我们服务器的一个普通用户账号

在这里插入图片描述
如图所示,连接成功,进入服务器系统。

安装Anaconda

1.在官网找到相应版本的下载连接,通过命令行下载,如下所示是Anaconda3的Linux版本,读者所需,可以到Anaconda下载地址查看
也可直接在“https://repo.anaconda.com/archive/” 链接尾部加上自己想下载的版本(如:“Anaconda3.-5.3.0-Linux-x86_64.sh”)即可

wget https://repo.anaconda.com/archive/Anaconda3.-5.3.0-Linux-x86_64.sh

在这里插入图片描述

2.等待安装,接下来的过程就是一直点击Enter键,直到需要回答yes或者no就好了
注意:当询问我们是否安装Microsoft VScode时回答no,因为我们目前用不到,(当然你想下也OK的)
在这里插入图片描述

3.配置路径

PS:我们为了保证各个用户(如Jiang_3)之间的conda不冲突,故选择了默认不激活conda,当你需要使用时再次输入激活命令即可

现在网上比较流行的有两种方式:

  • 将路径追加输入bashrc中,并启用

echo ‘export PATH="~/anaconda2/bin:$PATH"’ >> ~/.bashrc
source ~/.bashrc

但是这种方式好像需要root权限,我是普通用户登录的,权限不够,故采用以下方式

  • export方式,直接输入以下命令

export PATH="/$HOME/anaconda3/bin:$PATH"
export PATH="$PATH:$HOME/anaconda/bin"

4.查看是否配置成功
输入python命令,出现版本为你anaconda中的python版本:
在这里插入图片描述

输入conda --version,出现版本anaconda中的conda版本:
在这里插入图片描述

如此anaconda即安装完成,使用之前可以先阅读这篇不是很长的Anaconda使用手册

简单使用

  1. 新建一个环境,如创建一个名为tensorflow的环境,且python版本为3.5

    conda create --name tensorflow python=3.5
    或者(这两种方式等价)
    conda create -n tensorflow python=3.5

在这里插入图片描述

  1. 查看环境,激活环境,验证python版本号

conda info --envs
source activate tensorflow
python

在这里插入图片描述

  1. 接下来你想在这个环境里干嘛就干嘛啦
  2. 退出环境

    source deactivate

参考资源链接:[VSCode远程连接服务器指南:安装与配置步骤](https://wenku.csdn.net/doc/fxx7kvqtc2?utm_source=wenku_answer2doc_content) 连接到远程Ubuntu服务器配置Anaconda和MindSpore环境是一项关键技能,特别是在进行数据科学和机器学习项目时。以下是一系列专业步骤,旨在帮助你在VSCode中高效地完成这些任务。 首先,确保你的VSCode已经安装了Remote Development插件。接下来,按照《VSCode远程连接服务器指南:安装与配置步骤》中的说明,通过SSH连接到你的Ubuntu服务器。 安装Anaconda配置Python环境的第一步。从Anaconda官方网站下载适合的Linux版本,并根据指南完成安装。安装完成后,通过运行`conda list`命令验证Anaconda是否正确安装。 创建一个新的conda环境是管理Python版本的关键。使用命令`conda create -n mindspore_py37 python=3.7`来创建一个专门用于MindSpore的环境。接着,激活这个环境并使用conda安装MindSpore:`conda activate mindspore_py37`和`conda install mindspore-cpu -c mindspore -c conda-forge`。 在某些项目中,你可能需要使用pip来安装额外的Python包。例如,如果你需要安装MindQuantum库,可以使用命令:`pip install ***`。为了确保使用的是正确的Python版本,建议使用`python -m pip`代替简单的pip命令。 为了管理不同Python版本和包版本,你可以在`requirements.txt`文件中列出项目所需的依赖,然后使用`pip install -r requirements.txt`来安装所有依赖,确保环境的一致性。此外,conda环境的隔离性确保了包版本的独立管理。 最后,为了在VSCode中运行你的Python脚本,可以使用`nohup`命令以及重定向输出到日志文件,如:`nohup python main2.py > output.log &`。这将保持你的脚本在后台运行,即使终端会话结束。 以上步骤涵盖了在VSCode中使用Remote Development插件连接到Ubuntu服务器、安装和配置Anaconda及MindSpore环境,以及使用conda和pip正确管理Python版本和包版本的全过程。对于希望深入了解VSCode远程开发或Python环境管理的读者,建议查阅《VSCode远程连接服务器指南:安装与配置步骤》,该指南提供了详尽的配置步骤和最佳实践,是掌握远程开发的宝贵资源。 参考资源链接:[VSCode远程连接服务器指南:安装与配置步骤](https://wenku.csdn.net/doc/fxx7kvqtc2?utm_source=wenku_answer2doc_content)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值