序言
最近再开始学习机器学习,作为一个小白,才刚刚去触摸这块领域,是让我真的很是难受,但是完事开头难,相信像我这样的孩子不在少数,作为入门机器学习或早或晚都会做的一件事情,配置Anaconda是不可或缺的,故以此文记下我配置Anaconda的一些过程。
什么是Anaconda?
官方宣称:最受欢迎的Python数据科学平台。
优势:
- 提供包管理与环境管理的功能(conda命令)
- 预装好了conda,某个版本的python,众多packages,科学计算工具等等(故也算是python的一种发行版)
还有MiniConda,它只包含conda和python以及相关的依赖项,所需空间比Anaconda要小得多
conda:
提供包管理与环境管理的功能,其设计理念就是:几乎所有的工具、第三方包都当做package对待,甚至包括python和conda自身! 因此,conda打破了包管理与环境管理的约束,能非常方便地安装各种版本python、各种package并方便地切换。
基于服务器上Linux系统安装Anaconda
我所用服务器上使用的系统为Ubuntu16.04,所以其下载及安装可以完全参照Linux系统的做法
服务器登录:
由于我所使用的服务器是不在本地的,且只能内网访问,故只能使用VPN远程连接,以下为VPN连接方式:
1.下载所需VPN并安装
2.打开连接:
如图输入你的已知信息即可连接
3.连接服务器:
因为服务器上Linux系统给分配了好几个用户出来,且授予了登录权限,故其登录有超级管理员登录,以及普通用户登录两种方式
Linux中root用户连接:
其中,ssh为连接方式,22为服务器端口,@root在此可以省略,xx.xxx.xx.xxx为你服务器的IP地址
Enter键后会出现请你输入登录密码的提示,输入相应密码既可登录服务器,如图如果相应连接地址不存在服务器,可能就会等待很长时间无反应
普通用户登录:
打开cmd,按找如图所示,连接服务器
其中,Jiang_3@后面是服务器的IP地址,Jiang_3是我们服务器的一个普通用户账号
如图所示,连接成功,进入服务器系统。
安装Anaconda
1.在官网找到相应版本的下载连接,通过命令行下载,如下所示是Anaconda3的Linux版本,读者所需,可以到Anaconda下载地址查看
也可直接在“https://repo.anaconda.com/archive/” 链接尾部加上自己想下载的版本(如:“Anaconda3.-5.3.0-Linux-x86_64.sh”)即可
wget https://repo.anaconda.com/archive/Anaconda3.-5.3.0-Linux-x86_64.sh
2.等待安装,接下来的过程就是一直点击Enter键,直到需要回答yes或者no就好了
注意:当询问我们是否安装Microsoft VScode时回答no,因为我们目前用不到,(当然你想下也OK的)
3.配置路径
PS:我们为了保证各个用户(如Jiang_3)之间的conda不冲突,故选择了默认不激活conda,当你需要使用时再次输入激活命令即可
现在网上比较流行的有两种方式:
- 将路径追加输入bashrc中,并启用
echo ‘export PATH="~/anaconda2/bin:$PATH"’ >> ~/.bashrc
source ~/.bashrc
但是这种方式好像需要root权限,我是普通用户登录的,权限不够,故采用以下方式
- export方式,直接输入以下命令
export PATH="/$HOME/anaconda3/bin:$PATH"
export PATH="$PATH:$HOME/anaconda/bin"
4.查看是否配置成功
输入python命令,出现版本为你anaconda中的python版本:
输入conda --version,出现版本anaconda中的conda版本:
如此anaconda即安装完成,使用之前可以先阅读这篇不是很长的Anaconda使用手册
简单使用
- 新建一个环境,如创建一个名为tensorflow的环境,且python版本为3.5
conda create --name tensorflow python=3.5
或者(这两种方式等价)
conda create -n tensorflow python=3.5
- 查看环境,激活环境,验证python版本号
conda info --envs
source activate tensorflow
python
- 接下来你想在这个环境里干嘛就干嘛啦
- 退出环境
source deactivate