第四课 保姆级工具栏介绍

本文详细介绍了AltiumDesigner中的关键设计工具和步骤,如总线和网络标签的使用、器件和电源端口的放置、层次式原理图的构建、线束/指示的功能以及文本和标注的处理。特别关注了网络标识范围的选择和不同连接方式的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Altium Designer 总线的绘制

(1)放置工具栏介绍

(2)优点:用总线的优点是简化了原理图的绘制,使电路结构更加清晰。

(3)志博PCB论坛

Altium Designer 总线的绘制_志博PCB - 原创精品文章 - 志博PCB-电子工程师PCB开源社区-高速PCB培训|PCB实战视频|PCB封装库 -

(4)一般包括总线入口,总线,网络标签(重点是网络标签)

总线没有现实意义,需要网络标签标识。

(5)绘画顺序:先放总线,再放总线入口。

(可以先放一个总线入口,确定总线位置),绘制完总线和总线入口后,添加网络标签注意名称。

   

单向的            

                   

双向的

2.器件放置

(1)点击放置—器件,出现如下界面(方法2:点击右下角Panel添加components)

3.电源端口

(1)作用范围:所有图纸

电源:VCC   接地:GND

修改style:不同形式的电源端口

  

4.端口

(1)不具备连通功能,需要网络标签进行连接。

  

未连接                  

          

 已连接

5.离图连接器

(1)不同页面连接

1)离图连接器

2)网络标签

不同页面的切换和连接?未详细介绍,后续再详细

6.网络标签作用范围

(1)“Automatic”是缺省选项,系统也会默认此项,表示系统会检测项目图纸内容,从而自动调整网络标签的范围

检测及自动调整的过程如下:

### 关于Cityscapes数据集的保姆使用教程 #### 了解Cityscapes数据集 Cityscapes是一个专注于城市街景图像语义理解的数据集,旨在推动计算机视觉技术的发展。该数据集包含了来自50个不同城市的高质量像素别标注图片,涵盖了各种天气条件和时间下的场景。 #### 下载与安装依赖库 为了方便处理Cityscapes数据集,在Python环境中建议先安装必要的工具包: ```bash pip install cityscapesscripts pillow numpy matplotlib opencv-python ``` 这些软件包提供了读取、可视化以及转换Cityscapes格式的功能[^1]。 #### 获取并解压数据集 访问官方网站下载所需版本的城市景观数据集文件,并将其放置在一个合适的位置。接着利用命令行工具解开压缩包: ```bash tar -xvf cityscapes.tar.gz ``` 这一步骤会创建一个名为`leftImg8bit`的目录结构,其中包含训练集(`train`)、验证集(`val`) 和测试集 (`test`) 的子文件夹;还有另一个叫做 `gtFine` 或者 `disparity` 的真值信息文件夹[^2]。 #### 加载样本图像及其标签 借助cityscapesscripts模块来加载单张或多张样例照片连同它们对应的类别掩码(mask),以便后续操作如展示或预览等用途。 ```python from cityscapesscripts.helpers.csHelpers import * import os.path as path import glob import cv2 def load_image_and_label(city_name='aachen', split_type='train'): img_dir = 'path/to/leftImg8bit/' + split_type + '/' label_dir = 'path/to/gtFine/' + split_type + '/' image_files = sorted(glob.glob(path.join(img_dir, city_name + '*_leftImg8bit.png'))) label_files = sorted(glob.glob(path.join(label_dir, city_name + '*_labelIds.png'))) images = [] labels = [] for i in range(len(image_files)): im = cv2.imread(image_files[i]) lb = cv2.imread(label_files[i], flags=cv2.IMREAD_GRAYSCALE) images.append(im) labels.append(lb) return images, labels ``` 上述代码片段展示了如何遍历指定城市名称下的所有可用资源,并返回一对列表形式的结果——一个是RGB模式下的原图集合,另一个则是灰度别的实例化ID映射表[^3]。 #### 可视化部分成果 最后可以通过简单的绘图函数查看所选区域内的任意一张影像与其对应的真实标记之间的关系。 ```python import matplotlib.pyplot as plt images, labels = load_image_and_label() plt.figure(figsize=(10, 5)) for idx in range(min(4, len(images))): ax = plt.subplot(2, 4, idx + 1) plt.imshow(cv2.cvtColor(images[idx], cv2.COLOR_BGR2RGB)) bx = plt.subplot(2, 4, idx + 5) plt.imshow(labels[idx]) plt.show() ``` 这段脚本选取前四个元素作为代表性的例子进行对比显示,顶部一行呈现彩色实景照而底部相应位置给出黑白版面域分类情况[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值