非常可乐
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7859 Accepted Submission(s): 3141
Problem Description
大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为。因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶可乐,而且一定要喝的和seeyou一样多。但seeyou的手中只有两个杯子,它们的容量分别是N 毫升和M 毫升 可乐的体积为S (S<101)毫升 (正好装满一瓶) ,它们三个之间可以相互倒可乐 (都是没有刻度的,且 S==N+M,101>S>0,N>0,M>0) 。聪明的ACMER你们说他们能平分吗?如果能请输出倒可乐的最少的次数,如果不能输出"NO"。
Input
三个整数 : S 可乐的体积 , N 和 M是两个杯子的容量,以"0 0 0"结束。
Output
如果能平分的话请输出最少要倒的次数,否则输出"NO"。
Sample Input
7 4 3 4 1 3 0 0 0
Sample Output
NO 3
倒水问题,乍一看不知该如何入手,其实自己找三个杯子倒过以后你就会发现,倒水的时候每次就是将一个杯子的水往另外一个杯子里面到,因此也就只有两种情况,一种是一个杯子的水能全部倒入另外一个杯子里面,另一种就是该杯子中的水能将另外一个杯子倒满(可能有剩余,可能没剩余),因此,就用光搜搜索完倒水的所有情况,对判断所有的情况中有没有符合的
倒水的总的情况的个数并不多,因为所有的情况都是由于各个杯子的容量的差值引起的,只有利用差值才能在没有刻度的情况下倒出不同体积的水
附上代码:
/*
a A杯子的总容量
b B杯子的总容量
c C杯子的总容量
t.a(s.a) A杯子中现有水的体积
t.b(s.b) B杯子中现有水的体积
t.c(s.c) C杯子中现有水的体积
t.n(s.n) 倒水的次数
a - t.a A杯子中剩余的体积
b - t.b B杯子中剩余的体积
c - t.c C杯子中剩余的体积
t.a - (b - t.b) 把a杯子中的水往b杯子里面倒,且把b杯子倒满(前提是 t.a > (b - t.b))
t.b - (c - t.c) ...
t.c - (a - t.a) ...
v[][][] 数组,用来标记的数组,标记某种状态是否出现过,如果出现过就不再二次判断这种状态
*/
#include<iostream>
#include <algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct node
{
int a,b,c,n;
};
int v[103][103][103];
void bfs(int a,int b,int c)
{
node t,s;
queue<node> q;
t.a = a;
t.b = 0;
t.c = 0;
t.n = 0;
q.push(t);
while(!q.empty())
{
t = q.front();
v[t.a][t.b][t.c]= 1; // 在某一种状况下进行倒水,分别分别把a、b、c杯子中的水往外倒的情况
if((t.a == a/2 && t.b == a/2)||(t.a == a/2 && t.c == a/2)||(t.b == a/2 && t.c == a/2))
{
break;
}
q.pop();
// 将a杯子的水往外倒
if(t.a != 0) // 如果b杯子没有被装满,还剩下t.b的体积可以装
{
if(t.a > b - t.b) // b杯子中的剩余的体积比a杯子中的水的体积小,
// 将b杯子装满
{
s.a = t.a - (b - t.b);
s.b = b;
s.c = t.c;
s.n = t.n+1;
}
else // 如果b杯子中剩余的体积比a杯子中的水的体积大
// 则用a杯子中的水把b杯子装满,
{
s.a = 0;
s.b = t.a + t.b;
s.c = t.c;
s.n = t.n+1;
}
if(!v[s.a][s.b][s.c]) //如果这种状态没有出现过,进入队列,否则不进入队列
{
v[s.a][s.b][s.c] = 1; // 进入队列以后将这种状态标记为 1 说明这种状态一出现过了
q.push(s);
}
if(t.a > c - t.c) // a杯子中的水杯大于c子中的剩余体积
// 将c杯子全部装满
{
s.a=t.a-(c-t.c);
s.c=c;
s.b=t.b;
s.n=t.n + 1;
}
else // 在这一点会出现两种情况,(1):a杯子已经没水了 ,
{ //这种情况跟原来情况相同,忽略
s.a = 0; // (2):a杯子有水,但是a杯子中水的体积比c杯子剩余的体积的小
s.b = t.b; // 用a杯子中的水将c杯子装满,
s.c = t.a + t.c;
s.n = t.n + 1;
}
if(!v[s.a][s.b][s.c])
{
v[s.a][s.b][s.c] = 1;
q.push(s);
}
}
// 将b杯子的水往外倒
if(t.b != 0)
{
if(t.b > a-t.a)
{
s.b=t.b-(a-t.a);
s.a=a;
s.c=t.c;
s.n=t.n+1;
}
else
{
s.a = t.a + t.b;
s.b = 0;
s.c = t.c;
s.n = t.n + 1;
}
if(!v[s.a][s.b][s.c])
{
v[s.a][s.b][s.c] = 1;
q.push(s);
}
if(t.b > c - t.c)
{
s.a = t.a;
s.b = t.b - (c - t.c);
s.c = c;
s.n = t.n + 1;
}
else
{
s.a = t.a;
s.b = 0;
s.c = t.b + t.c;
s.n = t.n + 1;
}
if(!v[s.a][s.b][s.c])
{
v[s.a][s.b][s.c] = 1;
q.push(s);
}
}
// 将c杯子的水往外倒
if(t.c != 0)
{
if(t.c > a - t.a)
{
s.a = a;
s.b = t.b;
s.c = t.c - (a - t.a);
s.n = t.n + 1;
}
else
{
s.a = t.a + t.c;
s.b = t.b;
s.c = 0;
s.n = t.n + 1;
}
if(!v[s.a][s.b][s.c])
{
v[s.a][s.b][s.c] = 1;
q.push(s);
}
if(t.c > b - t.b)
{
s.a = t.a;
s.c = t.c - (b - t.b);
s.b = b;
s.n = t.n + 1;
}
else
{
s.c = 0; s.a = t.a;
s.b = t.b + t.c;
s.n = t.n + 1;
}
if(!v[s.a][s.b][s.c])
{
v[s.a][s.b][s.c] = 1;
q.push(s);
}
}
}
if(q.empty())
printf("NO\n");
else
{
while(!q.empty())
q.pop();
printf("%d\n",t.n);
}
return;
}
int main()
{
int a,b,c;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
memset(v,0,sizeof(v));
if((a + b + c) == 0) break;
// 只有偶数是才有可能被平分
if(a & 1) // 位运算 与 的关系,奇数的二进制末尾都为1,与 1 位运算 与 结果是 0 ,偶数与 1 进行位运算为 1;
printf("NO\n");
else
bfs(a,b,c);
}
return 0;
}