Massive MIMO 波束赋型与管理
摘 要
Massive MIMO技术已经在实际应用中取得了较好的效果。目前,该技术已经被广泛应用于5G通信系统中,可以有效地提高系统的容量和频谱效率。本文先简单介绍一下Massive MIMO,包括研究背景、信道模型、信道容量以及Massive MIMO与传统MIMO的对比,最后总结Massive MIMO的优缺点。之后对波束赋形进行重点介绍,包括数字波束赋形、模拟波束赋形和混合波束赋形,对这三种波束赋形原理、架构进行简单介绍并对比这三种技术,总结优缺点。再者,对波束管理进行了介绍,包括波束测量与上报与波束失效与恢复的流程及技术特点。接下来对波束赋形进行了MATLAB仿真分析,得出不同到达角的波束方向图,分析了天线数和波束到达角与波束宽度的关系。最后总结全文,得出自己的思考与感悟。
一、 引言
MIMO(Multiple-Input Multiple-Output,多输入多输出) 技术指的是在发射端和接收端都采用多天线技术,使得信号能够通过多个路径进行发射和接收,能够提高无线信号传输的空间自由度 (DoF, degree of freedom),从而提高无线接入网络的频谱效率 (SE, spectral efficiency) 与信道容量[1]。由于 MIMO 技术被大范围的用于各种通信场景中,小到家中WIFI,小基站,大到宏蜂窝基站,各种应用场景的出现充分证明了 MIMO 技术的成熟性和可靠性。现有研究表明, 点对点 (P2P) MIMO 衰落信道的容量与发射/接收天线数量的最小值成正比,其可靠性服从SNR(NtNr)规律, 其中Nt和Nr分别表示发射和接收天线数量,SNR表示接收信噪比[2]。
图1-2 工作于2.6GHz圆柱形模天线阵列
5G 时代带来的新的频谱和波束赋性技术的增强,使得 MIMO 技术显得尤为重要,其中大规模阵列天线,即Massive MIMO 的应用的变的更为普遍[3]。Massive MIMO (Massive Multiple-InoutMultiple-Output) 是一种利用大量天线和波束赋形技术来提高无线通信系统容量和频谱效率的技术。该技术将大量天线阵列部署在基站上,通过波束赋形技术将信号集中在用户所在的方向上,从而提高信号传输效率和可靠性。同时,由于大量天线的存在,该技术可以实现空时编码和空时多址技术,从而进一步提高系统容量和频谱效率。
二、 Massive MIMO综述
2.1研究背景
Massive MIMO技术是目前5G移动通信系统的关键技术之一。Massive MIMO通过在基站端部署数十甚至上百的天线形成天线阵列,同时向多个用户发送数据, 实现了在系统容量和频谱利用率方面性能的提高,天线阵列通常有128天线阵子或者192天线阵子,配合64收发单元,可以产生更窄的发射波束,从而提高了发射增益。5G时代下的MIMO波束赋型的能力扩展到3D维度,减少了网络终端之间的干扰,提升了系统的容量和信噪比。大规模 MIMO 技术能够提高 SE 1∼2 个数量级, 同时提升能源效率 (EE, energy efficiency) 3 个数量级[4]。
另外由于波束赋型的技术,能够把发射的能量聚集于一个方向,更为客观的来抑制波束的旁瓣从而抑制用户之间的干扰。由此可知,大规模阵列天线带来的优势,能够大大提高5G系统的频谱效率,弥补 5G 中高频带来的系统的链路损失,从而达到 5G 的系统容量的提升和网络覆盖的增强。
图2-1 大唐电信256元天线阵列
Massive MIMO技术与传统MIMO相比,具有诸多特点。如表2-1所示,其中给出了传统MIMO与大规模MIMO之间性能对比。
表2-1 传统MIMO与大规模MIMO对比[4]
技术内容 | 传统MIMO | 大规模MIMO |
---|---|---|
天线数量 | 小于8 | 大于100 |
信道角度值 | 不确定性 | 随着矩阵维数的增长接近确定性函数 |
信道容量 | 低 | 高 |
分集增益 | 低 | 高 |
高链路可靠性 | 低 | 高 |
抗噪能力 | 低 | 高 |
阵列分辨率 | 低 | 高 |
天线相关性 | 低 | 高 |
耦合性 | 低 | 高 |
SER | 高 | 低 |
虽然Massive MIMO技术有很多优点,但是导频污染、信道测量、建模与估计、波束赋型/预编码与检测设计、硬件复杂度等问题也将限制Massive MIMO系统的实现[5]。
2.2信道模型
IMT-2020主信道模块的单链路三维MIMO建模框架如图2-2所示[6]:
图2-2 5G Massive MIMO信道建模
2.3信道容量
2.4小结
Massive MIMO技术有以下几个优点:
\1. 提高信号传输效率。利用大量天线进行信号处理和优化,可以提高系统的容量和频谱效率,从而实现更高的数据传输速率和更低的延迟。
\2. 减少信号干扰。Massive MIMO 技术可以利用空间上的多样性和信号处理技术来减少信号的千扰,从而提高系统的可靠性和稳定性。
\3. 空间覆盖范国广。由于使用了大量天线进行信号处理和优化, Massive MIMO 系统可以实现更广泛的空间覆盖范围,从而提高系统的覆盖性能。
\4. 降低功耗和成本。Massive MIMO 系统可以利用天线阵列和信号处理技术来降低功耗和成本,从而提高系统的经济性和可持续性。
Massive MIMO 技术也存在一些缺点,主要包括以下几个方面:
\1. 系统设计复杂。由于系统涉及到大量天线、信号处理器和复杂的算法,因此系统的设计和实现难度较大。
\2. 对信道条件要求高。Massive MIMO技术的应用需要对信道条件有一定的要求,如果信道条件不理想,就可能影响系统的传输效率和可靠性。
\3. 对硬件要求高。由于需要使用大量天线和信号处理器,Massive MIMO技术的硬件要求较高,这会增加系统的成本和复杂度。
三、 Massive MIMO波束赋型
波束赋型是指通过调整不同天线的幅度和相位,智能的调整波束成形的方向,通过这一技术,发射能量可以汇集到用户所在位置,而不向其他方向扩散,并且基站可以通过监测用户的信号,对其进行实时跟踪,使最佳发射方向跟随用户的移动,保证在任何时候手机接收点的电磁波信号都处于叠加状态。波束赋形技术可以在不改变总功率的情況下,将信号的传输方向更加精确地控制在接收端,从而提高信号的质量和减少干扰[7]。如图3-1所示为不同参数下波束方向图
图3-1 不同参数下的波束方向图
而大规模阵列天线,采用更大规模的天线阵子(>>8)使得赋型的效果要远好于传统 8 天线的赋型,具有更窄的波束,更高的增益,更好的旁瓣抑制效果。另外由于采用了多行多列的天线布局,使得天线有更大的自由度来进行垂直方向的波束赋型,从而使得 3D MIMO 成为可能。 3D MIMO 解决了传统 8 天线不能提供的垂直波束赋型的缺陷,更好的为大规模天线的实际应用提供了技术的保障[2]。如图3-2所示。
图3-2 1D、2D、3D波束赋形示意图
波束赋形技术分为数字波束赋形和模拟波束赋形,以及混合波束赋形。如图3-3所示为三种波束赋形的原理架构图。
图3-3 3种波束赋形原理架构
如表3-1所示为不同波束合成方式N单元接收天线阵面器件数量及功耗对比,可见混合波束赋形结合了模拟和数字波束赋形的优点。
表 3-1 不同波束合成方式N单元接收天线阵面器件数量及功耗对比
3.1数字波束赋形
图3-4 数字波束赋形示意图
如图3-4所示,在数字基带之前即时域范围内形成波束,称作数字波束赋形。数字波束赋形结构中,每根天线对应的一条射频(RF)链路,可以在基带控制每路信号的幅度和相位,产生波束时多条RF链路共同参与,因此可以实现多个数据流共同传输,产生精确的波束[8]。但是尽管这种全数字架构可以提供更复杂的空间复用/干扰抑制方法,但是具有太多RF chain会导致整个结构的硬件实现非常复杂,成本很高,功耗较大,这使得全数字波束赋形方法对于Massive MIMO系统不可行。
3.2模拟波束赋形
图3-5 模拟波束赋形示意图
如题3-5所示,在模拟基带之前即频域范围内形成波束,称作模拟波束赋形。对于模拟波束赋形,所有天线只需1条 RF链与其连接,每根天线发送的信号一般通过移相器改变其相位。由于器件能力的限制,模拟波束赋形一般在整个带宽上进行赋形,无法像数字波束赋形那样针对部分子带单独进行赋形。由于以上这些特点,模拟波束赋形只能调整相位而不能调整幅度,产生波束不一定准确,赋形灵活性要低于数字波束赋形。但由于模拟波束赋形的天线阵列所需要的数字链路数量要远低于数字波束赋形的天线阵列所需要的数字链路数量,在天线数变得很多的情况下,模拟波束的天线阵列成本下降明显。
3.3混合波束赋形
图3-6 混合波束赋形系统模型
数字波束赋形允许以高实现复杂度和功耗为代价的更复杂的传输方法。另一方面,模拟波束赋形提供了一种简单的解决方案,但由于采用量化移相器,其本身的局限性是单流传输和波束转向的灵活性有限。而5G中采用的毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中;同时,毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用低频段采用的数字波束赋形方式,而是采用模拟波束和数字端口相结合的混合波束赋形方式[9]。
混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度之间做了平衡,具有支撑多个数据流和多个UE同时赋形的能力,使其增益尽可能达到全数字波束赋形的效果。同时,将复杂度也控制在合理范围内,因此成为波束赋形中一种广泛采用的传输方式。如图3-7所示为混合波束成形阵列架构。
图3-7 混合波束成形阵列架构
混合波束赋形可以在两种不同的结构中实现:(a)共享天线阵列,(b)独立天线阵列
图3-8 共享天线阵列架构
如图3-8所示为共享天线阵列架构,在这种结构中,每个流都可以访问所有天线。因此,天线增益可能较高。这种结构导致功率放大器前面的信号峰值增加。然而,在OFDM系统中,这一问题的严重性却较低。另外,共享阵列的射频结构更为复杂,不易实现。
图3-9 独立天线阵列架构
如图3-9所示为独立天线阵列架构,在这种架构中,每个流没有对所有天线的完全访问权,导致天线增益降低。然而,独立天线阵列结构比共享天线阵列结构更简单,模块化程度更高。
四、 5G Massive MIMO波束管理
4.1波束测量与上报
波束测量过程可以描述如下:如果一个基站能够发送M个模拟波束,可以用每个波束传输一个赋形的参考信号用于波束的测量。同时,UE用N个接收波束分别对M个赋形参考信号进行测量,选择合适的接收波束和发送波束。因此,基站与 UE间一共需要测量MN个波束对,才能找到最佳的收发配对波束[10]。
图4-1 波束收发顺序
一种波束收发顺序如图4-1所示,其中,基站的4个发送波束的参考信号以4个连续时隙为周期发送,下一个周期重复以上过程,接收终端在一个周期内固定接收的波束,连续接收4个不同发送波束的参考信号,选出最佳的发送波束。在下一个周期,UE 切换到另外一个波束进行接收,并根据两个周期的接收结果,选出最佳的收发波束对。
目前5G NR支持以下3种波束测量过程:
\1. 联合收发波束测量:基站和UE 都执行波束测量。每个波束的参考信号重复发送N次,从而让UE能够测试N个不同的接收波束,选取最合适的发送和接收波束对。
\2. 发送波束测量:基站通过轮循方式发送多个波束的参考信号,UE 采用固定的接收波束,选取最合适的发送波束与固定的接收波束配对。
\3. 接收波束测量:基站采用固定波束重复发送参考信号,UE用轮循方式测试不同的接收波束,选取最合适的接收波束与基站的发送波束配对。
如表4-1所示为波束测量的评价指标对比:
表4-1 用于波束测量的2种常用指标对比
指标特性 | 参考信号接收功率(RSRP) | 信道状态信息(CSI) |
---|---|---|
复杂度 | 低 | 高 |
适用范围 | 大量波束的快速测量 | 提供更精确的波束赋形信息 |
适用场景 | 初始波束测量和配对场景 | 候选波束中对波束精确测量的场景 |
在波束测量时,虽然UE 需要监测和估算MN个波束对的信道质量,但它不需要将所有波束对的信道质量上报给基站,只需要选取其中的最优波束对进行上报。而最优波束对所对应的接收波束只需要存储在UE 中,不需要上报给基站。
4.2波束失效与恢复
对于高频段毫米波通信来说,如果波束受到遮挡,将很容易造成通信中断。这是由于高频段波长短,反射和衍射性能差,大部分传输能量都集中在直射传播路径。因此,设计能够快速从波束遮挡(Beamblockage)中恢复,确保控制信道传输的可靠性和顽健性的机制,成为高频段传输中的一个重要研究内容。下文将介绍波束失效与恢复过程[10]。
① 波束失效检测: 目的是判断当前控制信道所用的波束是否能满足通信所需的质量要求,若不能则认为发生波束失效事件。在NR的标准化中,对误块率(BLER)和L1-RSRP两个参数用于评估控制信道质量进行了研究,两种参数的定义以及实现方式如下:
l BLER参数的工作过程为:根据所测量到的信干噪比(Sienal to Interference and NoiseRatioSINR)推断出PDCCH的BLER,如果BLER值高于所设定的值,则认为该波束失效。当UE测量到M个波束对应的控制信道的BLER值都高于阈值,则认为波束失效事件发生。
l 基于L1-RSRP参数的波束失效事件定义为: UE测量到M个波束的L1-RSRP值小于阈值,则认为波束失效事件发生。
② 新波束检测上报: 终端测量并获取新的可用波束的过程。当测量到波束失效事件发生时,UE 需要将该事件上报给基站,并上报新的候选波束信息。基站收到上报信息后,通过波束恢复过程尽快从波束失效中恢复,重新选择用于传输的新波束替代原有波束。当 UE 完成测量后,把新候选波束上报给网络,所选择的新候选波束需要满足性能门限要求,比如BLER低于阈值或者RSRP超过值。
③ 波束失效恢复请求发送: 如果波束失效检测过程中判断发生了波束失效事件,终端将在基站配置的专用资源上发送波束失效恢复请求,报告基站发生了波束失效事件,同时该请求中还将携带新波束的标识信息。
④ 响应: 请求发送之后,终端在基站配置的时间窗内检测基站用新波束发送的控制信息。如果能成功检测到一条控制信息,则认为基站成功接收到了终端发出的请求。基站在后续可以配置触发终端 进行波束测量和上报,并对控制信道的发送波束进行重新配置。控制信道的波束重新配置完成之后,波束失效恢复过程结束[11]。
五、 波束赋型MATLAB仿真分析
5.1均匀线阵方向图
matlab 程序如下所示:
clc;
clear all;
close all;
imag=sqrt(-1);
element_num=8;%阵元数为8
d_lamda=1/2;%阵元间距d与波长lamda的关系
theta=linspace(-pi/2,pi/2,200);
theta0=0;%来波方向
w=exp(imag2pid_lamdasin(theta0)*[0:element_num-1]');
for j=1:length(theta)
a=exp(imag2pid_lamdasin(theta(j))*[0:element_num-1]');
p(j)=w’*a;
end
patternmag=abs§;
figure(1)
plot(theta*180/pi,patternmag);
grid on;
xlabel(‘theta/radian’)
ylabel(‘amplitude/dB’)
当来波方向theta0设为0时可得如图5-1、5-2仿真结果,可见在0度有一强波束,其他方向相比之下信号强度很小或几乎没有。
图5-1 8阵元均匀线阵方向图,来波方向为0度
当来波方向theta0设为45度时可得如下仿真结果,可见在0度有一强波束,其他方向相比之下信号强度很小或几乎没有。
图5-2 8阵元均匀线阵方向图,来波方向为45度
随着阵元数的增加,波束宽度变窄,分辨力提高,当阵元数为32时,来波方向分别为0和45度时仿真方向图如下图5-3、5-4:
图5-3 32阵元均匀线阵方向图,来波方向为0度
图5-4 32阵元均匀线阵方向图,来波方向为45度
5.2波束宽度与达波方向及阵元数的关系
matlab 程序如下所示
clc;
clear all;
close all;
imag=sqrt(-1);
element_num1=16;
element_num2=128;
element_num3=1024;
lambda=0.1;
d=0.5*lambda;
theta=0:0.5:90;
for j=1:length(theta)
fai(j)=theta(j)*pi/180-asin(sin(theta(j)pi/180)-lambda/(element_num1d));
psi(j)=theta(j)*pi/180-asin(sin(theta(j)pi/180)-lambda/(element_num2d));
beta(j)=theta(j)*pi/180-asin(sin(theta(j)pi/180)-lambda/(element_num3d));
end
figure
plot(theta,fai,‘r’,theta,psi,‘b’,theta,beta,‘g’);
grid on;
xlabel(‘theta’);
ylabel(‘width in radians’);
title(‘波束宽度与达波方向及阵元数目的关系’);
legend(‘N=16’,‘N=128’,‘N=1024’);
如下图5-5所示仿真结果,分别为阵元数目为16、128、1024时波束宽度与来波方向的关系:
图5-5 波束宽度与达波方向及阵元数目的关系
可见,波束宽度随着来波方向的增大而增大,在90度时到达最大值,同时随着阵数目的增加而减小,波束趋于集中。
六、 总结与思考感悟
首先,在学习 Massive MiMO技术的过程中,我深刻感受到了其在末来通信领域中的重要性和应用前景。我学习了解到了Massive MiMO的信道模型以及信道原理。通过对其原理和技术特点的深入了解,我认识到 Massive MIMO技术能够有效地提高通信系统的容量和频谱效率,从而满足未来高速、大容量通信的需求。我也发现Massive MIMO技术并不是一种孤立的技术,而是与其他技术紧密相连的。比如,波束赋形技术、波束管理技术等,都是 MassiveMIMO技术中的重要组成部分。这些技术的相互配合和协同作用,才能实现Massive MIMO技术的最优性能。此外,我认为对于 Massive MiMO技术的研究和应用,还需要继续探索和发展。例如,在实际应用中,如何解决天线阵列之间互相干扰的问题,如何提升系统的可靠性和安全性等,都需要我们不断进行研究和探索。总的来说,Massive MiMO技术是一种具有广阔前景和应用潜力的通信技术。通过深入学习和理解,我相信末来 MassiveMIMO技术将会为人类的通信生活带来更加便捷和高效的体验。
其次,我对 Massive MIMO技术中的波束赋形有了一些自己的感悟和思考。首先,我学习了解了模拟波束赋形、数字波束赋形以及混合波束赋形的技术原理和架构特点。其次,我发现波束赋形不仅仅是调整天线的方向性,还需要结合信号处理技术来对信号进行优化处理。例如,我们可以利用多通道传输和干扰消除技术来进一步提高信号传输效率和减少干扰。这需要我们对信号处理技术有更深入的理解和应用。最后,在实际应用中,波束赋形需要结合实际场景进行优化,例如考虑天线的位置、用户的移动速度、信道的变化等因素。因此,我们需要对实际场景进行深入的观察和分析,以便更好地优化波束赋形效果。表6-1是三种波束赋形技术的对比:
表6-1 3种波束赋形方式对比
波束赋形方式 | 性能 | 成本 | 体积 | 工艺复杂度 | 可扩展性 | 射频损耗 |
---|---|---|---|---|---|---|
模拟 | 性能低、功耗低 | 低廉 | 大 | 简单 | 难 | 高 |
数字 | 性能高、功耗高 | 昂贵 | 小 | 复杂 | 易 | 低 |
混合 | 性能高、功耗较低 | 适中 | 适中 | 适中 | 易 | 低 |
再者,在学习和实践中,我对 Massive MIMO 技术中的波束管理有了一些自己的感悟和思考。我了解并学习了波束测量与上报和波束失效与恢复,感悟到了我们平时所用的手机等移动终端的通信过程是多么地简单又深奥,生活中的科技处处藏着大学问。
最后,我在MATLAB波束赋形仿真过程中也发现了自己理论知识的不足与欠缺,这将反馈回来让我弥补我的知识短板,为以后的工程实践打下坚实基础。通过本次移动通信新技术的结课报告撰写,我编程仿真能力有了进一步提高,对Massive MIMO关键技术,包括信道模型、信道容量、波束赋形、波束管理有了更加深刻的理解,对实际科研、学习、实习中遇到的问题也有一定的帮助,感谢老师本学期的辛勤教学。
七、 参考文献
[1] Larsson E G .Fundamentals of massive MIMO[C]//2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).IEEE, 2016.DOI:10.1109/SPAWC.2015.7226986.
[2] Tse D , Viswanath P . Fundamentals of Wireless Communication. 人民邮电出版社, 2005.
[3]史丹. 5GNR大规模阵列天线原理和波束赋型的应用[J]. 中国新通信, 2020, 22(9):2.
[4] Rusek F , Persson D , Lau B K , et al. Scaling up MIMO: Opportunities and Challenges with Very Large Arrays[J]. Signal Processing Magazine IEEE, 2012, 30(1):40-60.
[5]张中山, 王兴, 张成勇,等. 大规模MIMO关键技术及应用[J]. 中国科学:信息科学, 2015, 45(9):1095-1110.
[6] Zhang J , Zhang Y , Yu Y , et al. 3-D MIMO: How Much Does It Meet Our Expectations Observed From Channel Measurements?[J]. IEEE Journal on Selected Areas in Communications, 2017.
[7] Chen X , Wang H , Wang W ,et al.On Dynamic Channel Emulation in Sector MPAC for Over-the-Air Testing of Beamformed Massive MIMO Devices[J].中国通信:英文版, 2023, 20(4):16.DOI:10.23919/JCC.fa.2022-0644.202304.
[8]孙韶辉, 高秋彬, 苏昕,等. 5G大规模波束赋形技术综述[J]. 无线电通信技术, 2019, 45(6):9.
[9]徐华正, 朱诗兵, 席有猷. 毫米波大规模MIMO系统混合波束成形技术综述[J]. 电讯技术, 2019, 59(2):8.
[10]王映民,孙韶辉.5G移动通信系统设计与标准详解[M].北京:人民邮电出版社,2020.4
[11]邵诗佳, 杨立, 高波. 毫米波通信中的波束管理标准化现状和发展趋势[J]. 信息通信技术, 2022(002):016