数据挖掘算法05 - KNN

32 篇文章 3 订阅
15 篇文章 2 订阅

KNN

KNN 的英文叫 K-Nearest Neighbor,应该算是数据挖掘算法中最简单的一种。

KNN 的工作原理

近朱者赤,近墨者黑可以说是 KNN 的工作原理。整个计算过程分为三步:

  • 计算待分类物体与其他物体之间的距离;
  • 统计距离最近的 K 个邻居;
  • 对于 K 个最近的邻居,它们属于哪个分类最多,待分类物体就属于哪一类。

K 值如何选择

如果 K 值比较小,就相当于未分类物体与它的邻居非常接近才行。这样产生的一个问题就是,如果邻居点是个噪声点,那么未分类物体的分类也会产生误差,这样 KNN 分类就会产生过拟合。

如果 K 值比较大,相当于距离过远的点也会对未知物体的分类产生影响,虽然这种情况的好处是鲁棒性强,但是不足也很明显,会产生欠拟合情况,也就是没有把未分类物体真正分类出来。

所以 K 值应该是个实践出来的结果,并不是我们事先而定的。在工程上,我们一般采用交叉验证的方式选取 K 值。

交叉验证的思路就是,把样本集中的大部分样本作为训练集,剩余的小部分样本用于预测,来验证分类模型的准确性。所以在 KNN 算法中,我们一般会把 K 值选取在较小的范围内,同时在验证集上准确率最高的那一个最终确定作为 K 值。

距离如何计算

在 KNN 算法中,还有一个重要的计算就是关于距离的度量。两个样本点之间的距离代表了这两个样本之间的相似度。距离越大,差异性越大;距离越小,相似度越大。

关于距离的计算方式有下面五种方式:

  • 欧氏距离;
  • 曼哈顿距离;
  • 闵可夫斯基距离;
  • 切比雪夫距离;
  • 余弦距离。

欧氏距离是我们最常用的距离公式,也叫做欧几里得距离。在二维空间中,两点的欧式距离就是:

同理,我们也可以求得两点在 n 维空间中的距离:

曼哈顿距离等于两个点在坐标系上绝对轴距总和。用公式表示就是:

闵可夫斯基距离不是一个距离,而是一组距离的定义。对于 n 维空间中的两个点 x(x1,x2,…,xn) 和 y(y1,y2,…,yn) , x 和 y 两点之间的闵可夫斯基距离为:

其中 p 代表空间的维数,当 p=1 时,就是曼哈顿距离;当 p=2 时,就是欧氏距离;当 p→∞时,就是切比雪夫距离。

二个点之间的切比雪夫距离就是这两个点坐标数值差的绝对值的最大值,用数学表示就是:max(|x1-y1|,|x2-y2|)。

余弦距离实际上计算的是两个向量的夹角,是在方向上计算两者之间的差异,对绝对数值不敏感。在兴趣相关性比较上,角度关系比距离的绝对值更重要,因此余弦距离可以用于衡量用户对内容兴趣的区分度。比如我们用搜索引擎搜索某个关键词,它还会给你推荐其他的相关搜索,这些推荐的关键词就是采用余弦距离计算得出的。

KD 树

其实从上文你也能看出来,KNN 的计算过程是大量计算样本点之间的距离。为了减少计算距离次数,提升 KNN 的搜索效率,人们提出了 KD 树(K-Dimensional 的缩写)。KD 树是对数据点在 K 维空间中划分的一种数据结构。在 KD 树的构造中,每个节点都是 k 维数值点的二叉树。既然是二叉树,就可以采用二叉树的增删改查操作,这样就大大提升了搜索效率。

在这里,我们不需要对 KD 树的数学原理了解太多,你只需要知道它是一个二叉树的数据结构方便存储 K 维空间的数据就可以了。而且在 sklearn 中,我们直接可以调用 KD 树,很方便。

用 KNN 做回归

KNN 不仅可以做分类,还可以做回归。

首先讲下什么是回归。在开头电影这个案例中,如果想要对未知电影进行类型划分,这是一个分类问题。首先看一下要分类的未知电影,离它最近的 K 部电影大多数属于哪个分类,这部电影就属于哪个分类。

如果是一部新电影,已知它是爱情片,想要知道它的打斗次数、接吻次数可能是多少,这就是一个回归问题。

那么 KNN 如何做回归呢?

对于一个新点,我们需要找出这个点的 K 个最近邻居,然后将这些邻居的属性的平均值赋给该点,就可以得到该点的属性。当然不同邻居的影响力权重可以设置成不同的。举个例子,比如一部电影 A,已知它是动作片,当 K=3 时,最近的 3 部电影是《战狼》,《红海行动》和《碟中谍 6》,那么它的打斗次数和接吻次数的预估值分别为 (100+95+105)/3=100 次、(5+3+31)/3=13 次。

如何用 KNN 对手写数字进行识别分类

手写数字数据集是个非常有名的用于图像识别的数据集。数字识别的过程就是将这些图片与分类结果 0-9 一一对应起来。完整的手写数字数据集 MNIST 里面包括了 60000 个训练样本,以及 10000 个测试样本。如果你学习深度学习的话,MNIST 基本上是你接触的第一个数据集。

今天我们用 sklearn 自带的手写数字数据集做 KNN 分类,你可以把这个数据集理解成一个简版的 MNIST 数据集,它只包括了 1797 幅数字图像,每幅图像大小是 8*8 像素。

KNN 分类的流程

  • 数据加载:我们可以直接从 sklearn 中加载自带的手写数字数据集;
  • 准备阶段:在这个阶段中,我们需要对数据集有个初步的了解,比如样本的个数、图像长什么样、识别结果是怎样的。你可以通过可视化的方式来查看图像的呈现。通过数据规范化可以让数据都在同一个数量级的维度。另外,因为训练集是图像,每幅图像是个 8*8 的矩阵,我们不需要对它进行特征选择,将全部的图像数据作为特征值矩阵即可;
  • 分类阶段:通过训练可以得到分类器,然后用测试集进行准确率的计算。

总结

在数据量不大的情况下,使用 sklearn 还是方便的。

如果数据量很大,比如 MNIST 数据集中的 6 万个训练数据和 1 万个测试数据,那么采用深度学习 +GPU 运算的方式会更适合。因为深度学习的特点就是需要大量并行的重复计算,GPU 最擅长的就是做大量的并行计算。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值