在人工智能的浩瀚星空中,刚发布不久的Llama 3如同一颗璀璨的星辰,以其强大的能力照亮了智能对话的未来。然而,即便是如此耀眼的存在,也因为某些不可说的原因在中文世界面前显得有些力不从心。但现在,一道曙光划破了这片迷雾——中文微调版的Llama 3正式登场,它的地址是:https://github.com/ymcui/Chinese-LLaMA-Alpaca-3。
这个版本并非官方出品,因此,我们不能直接使用ollama进行下载。但别担心,魔搭社区为我们提供了下载的途径。只需点击README中的魔搭社区地址,下载ggml-model-q8_0.gguf
,然后按照以下步骤操作:
- 编写Modelfile,内容如下:
FROM /models/ollamamodels/ggml-model-q8_0.gguf TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|> {{ .Response }}<|eot_id|>""" SYSTEM """""" PARAMETER num_keep 24 PARAMETER stop <|start_header_id|> PARAMETER stop <|end_header_id|> PARAMETER stop <|eot_id|> PARAMETER stop assistant PARAMETER stop Assistant
-
将
FROM
后面的路径替换为你自己的路径。 -
运行以下命令创建模型:
ollama create my-llama3 -f Modelfile
如此一来,一个本地运行的Llama 3模型便诞生了。经过我的亲自测试,这个经过微调的版本在中文支持度上有了显著的提升,不再出现中英文混杂的情况,让智能对话更加流畅自然。
让我们一起拥抱这个更加智能、更加懂中文的Llama 3,开启智能对话的新篇章!
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓