大模型LLM-输出的多样性

在大模型任务中,在训练、微调、prompt等过程中,有一些参数对输出的多样性起到了很大的调节作用,下面我们将对这些参数进行详细的介绍。

1 温度(Temperature)

在语言模型中,温度参数通常与softmax函数结合使用,softmax函数用于将模型输出的原始分数(logits)转换为概率分布。温度参数影响这个转换过程,进而影响最终生成文本的多样性。

  • 工作原理

1. 原始分数(Logits):模型对于每个可能的输出(例如,词汇表中的每个单词)生成一个原始分数。

2. 应用温度:将原始分数通过温度参数调整。如果温度 T 大于1,原始分数会被缩放(乘以T),导致概率分布更加平坦;如果温度小于1,原始分数会被压缩(除以T),使概率分布更加尖锐。

3. Softmax函数:调整后的分数通过softmax函数转换为概率分布,确保所有输出的概率之和为1。

  • 温度的影响

- 低温度(T < 1):生成的文本倾向于选择概率最高的单词,这减少了随机性,但可能导致生成的文本过于单调或重复。

- 高温度(T > 1):增加了生成文本的随机性,可能会生成更多样化的文本,但也可能包含更多不相关或语法错误的输出。

- 温度等于1:这是softmax函数的标准形式,不改变原始分数的分布。

  • 使用场景

- 文本生成:在聊天机器人、文本摘要、机器翻译等任务中,通过调整温度来平衡生成文本的流畅性和多样性。

- 创意写作:在需要创造性文本输出的应用中,可能需要较高的温度来生成更多样化的文本。

- 稳定性和确定性:在需要生成稳定和可预测文本的场景中,较低的温度可能更为合适。

  • 实际应用

在实际应用中,开发者可以根据需要调整温度参数,以达到期望的输出效果。例如,在训练过程中,可能使用较低的温度来生成更准确的文本;而在探索性任务或创意写作中,可能使用较高的温度来生成更多样化的文本。

  • 注意事项

- 温度参数的选择应根据具体任务和目标进行调整,可能需要通过实验来找到最佳值。

- 温度调整可能会影响模型性能,因此在调整时应考虑模型的总体表现。

  • 温度应用示例

假设我们有一个非常简单的语言模型,它的词汇表只包含三个单词:“猫”、“狗"和"鸟”。在某个时间步,模型生成了以下原始分数(logits):

  • 对于"猫"的logit是1.0

  • 对于"狗"的logit是0.5

  • 对于"鸟"的logit是0.3

  • 步骤1: 应用温度参数

假设我们选择了不同的温度值 T :

  • 当 T = 0.5 (低温度)时,原始分数会被压缩:1.0/0.5 = 2.0,0.5/0.5 = 1.0,0.3/0.5 = 0.6。

  • 当 T = 1.0(标准温度)时,原始分数保持不变:1.0, 0.5, 0.3。

  • 当 T = 2.0(高温度)时,原始分数会被放大:1.0 * 2.0 = 2.0,0.5 * 2.0 = 1.0,0.3 * 2.0 = 0.6。

  • 步骤2: 应用Softmax函数

接下来,我们对调整后的分数应用softmax函数来获取概率分布。Softmax函数定义为:

对于每个单词 i 的softmax概率 P_i ,计算如下:

  • 步骤3: 观察概率分布的变化

  • 低温度 T = 0.5 :压缩后的分数差距变大,导致"猫"的概率非常高,而"狗"和"鸟"的概率非常低。这会使得模型倾向于选择"猫"。

  • 标准温度 T = 1.0 :分数不变,softmax函数会给出更加平衡的概率分布。

  • 高温度T = 2.0 :放大后的分数差距变小,概率分布变得更加平坦,使得选择任何一个词的概率都相对接近,增加了随机性。

这个示例展示了如何通过调整温度参数来控制语言模型输出的多样性和确定性。在实际应用中,开发者可以根据需要选择适当的温度值来优化模型的生成效果。

2 Top-k Sampling

Top-k sampling是一种用于生成模型,如语言模型中的采样方法。在这个方法中,模型不会从所有可能的输出中均匀地选择一个,而是选择前k个最可能的输出,然后从这些输出中抽取一个。这种方法可以提高生成模型生成有意义的输出的概率,尤其是在训练大规模语言模型时。

  • 基本概念

  • 语言模型:语言模型是预测给定词序列下一个词的概率的模型。在文本生成中,语言模型会根据已有的词序列来预测下一个词。

  • 概率分布:在生成文本时,语言模型会为每个可能的下一个词分配一个概率。

  • top-k sampling:这是一种策略,它只考虑概率最高的k个词。在生成文本时,下一个词将从这k个词中随机选择。

  • 工作原理

  • 生成概率分布:语言模型首先根据当前的上下文(已生成的文本序列)生成一个词汇表上所有词的概率分布。

  • 选择top-k词:从这个概率分布中选择概率最高的k个词。这个k是一个超参数,可以根据需要调整。

  • 随机选择:在top-k词中随机选择一个词作为下一个生成的词。这个过程可以是简单的均匀分布,也可以是加权的,即概率越高的词被选中的可能性越大。

  • 重复过程:重复上述过程,直到生成了所需的文本长度或达到某个停止条件。

  • 优点

  • 它可以提高生成模型生成有意义的输出的概率。因为在top-k中的词汇通常是与当前上下文最相关的,所以模型从这个集合中抽取的词汇更有可能是正确的。

  • top-k sampling可以加快模型的生成速度。因为模型不需要考虑所有可能的输出,只需要考虑前k个最可能的输出。

  • top-k sampling可以提高模型的多样性。因为模型可以从多个可能的输出中选择,而不是只从其中一个输出中选择。

  • 缺点

  • 可能降低文本的创造性:top-k sampling可能会限制生成文本的创造性,因为它只考虑概率最高的词。

  • 超参数选择困难:k值的选择可能需要实验和调整,以找到最佳的平衡点。

top-k sampling是语言模型中的一种简单而有效的技术,但它需要与其他技术(如nucleus sampling或temperature scaling)结合使用,以实现更好的文本生成效果。

3 Top-p Sampling(Nucleus Sampling)

Top-p sampling,也称为nucleus sampling,是另一种文本生成策略,用于控制语言模型生成文本时的多样性和连贯性。与top-k sampling不同,在 top-p sampling 中,模型不会选择概率最高的单一输出,也不会选择前k个最可能的输出,而是选择所有概率之和等于p(通常是一个小于1的阈值)的输出。这个方法可以提高生成模型生成多样性和有意义的输出的概率。

Top-p sampling,也称为nucleus sampling,是另一种文本生成策略,用于控制语言模型生成文本时的多样性和连贯性。与top-k sampling不同,top-p sampling不是基于概率排名选择词,而是基于累积概率阈值来选择词汇。

  • 基本概念
  1. 概率分布:语言模型为给定上下文生成的每个可能的下一个词分配一个概率。

  2. 累积概率:将词汇表中所有词的概率按降序排列,并计算每个词的累积概率。

  3. top-p sampling:选择累积概率至少为p的最小集合的词。这里的p是一个介于0和1之间的超参数。

  • 工作原理
  1. 生成概率分布:语言模型根据当前上下文生成词汇表上所有词的概率分布。

  2. 计算累积概率:将概率按降序排列,并计算每个词的累积概率。

  3. 选择top-p词:选择第一个累积概率超过或等于p的词集合。例如,如果p=0.9,那么将选择概率最高的词,直到它们的累积概率至少为0.9。

  4. 随机选择:在top-p集合中随机选择一个词作为下一个生成的词。

  5. 重复过程:重复上述过程,直到生成了所需的文本长度或达到某个停止条件。

  • 优点

  • 更好的多样性:top-p sampling允许模型生成更多样化的文本,因为它不是严格限制在概率最高的k个词中。

  • 灵活性:通过调整p值,可以灵活地控制生成文本的多样性和连贯性。

  • 缺点

  • 可能生成不连贯的文本:如果p值设置得太低,可能会导致生成的文本不够连贯。

  • 超参数选择:需要根据特定应用场景调整p值,以达到最佳效果。

  • 举例说明

假设我们有一个简单的语言模型,它为给定上下文生成了以下概率分布:

  • 词1: 0.1

  • 词2: 0.2

  • 词3: 0.3

  • 词4: 0.05

  • 词5: 0.05

  • 词6: 0.3

如果我们设置p=0.7,那么累积概率如下:

  • 词1: 0.1

  • 词2: 0.3 (0.1 + 0.2)

  • 词3: 0.6 (0.3 + 0.3)

  • 词4: 0.65 (0.6 + 0.05)

  • 词5: 0.7 (0.65 + 0.05)

在这个例子中,累积概率达到或超过0.7的词是词3、词4和词5。因此,top-p sampling将从这些词中随机选择一个词作为下一个生成的词。

4 Length Penalty

在大模型的 Beam Search 算法中,length_penalty 是一个重要的参数,它影响着生成文本的长度和多样性。以下是关于 length_penalty 参数的详细介绍:

  • 定义

length_penalty 是一个用于调整 Beam Search 中候选序列得分的系数,以考虑序列的长度。这个参数可以影响模型生成长句子或短句子的倾向。

  • 作用机制

在 Beam Search 中,每个候选序列的最终得分不仅取决于其概率,还受到长度惩罚的影响。长度惩罚通过将候选序列的长度纳入考虑,来调整其得分。具体来说,候选序列的得分会乘以一个与长度相关的因子,这个因子由 length_penalty 参数控制。

  • 参数值的影响

  • length_penalty = 0.0:没有长度惩罚,模型会根据概率选择候选词,不考虑序列长度。

  • length_penalty < 0.0:负值会鼓励模型生成长句子。这是因为负的惩罚因子会随着序列长度的增加而减小,使得长序列相对于短序列具有更高的得分。

  • length_penalty > 0.0:正值会鼓励模型生成短句子。正值的惩罚因子随着序列长度的增加而增大,导致短序列相对于长序列具有更高的得分。

  • 应用场景

  • 当你希望模型生成较短的文本时,可以设置一个正值的 length_penalty,例如 1.0 或更高,以减少长文本的得分。

  • 当你希望模型生成更丰富、详细的文本时,可以设置一个负值的 length_penalty,例如 -0.5 或更低,以增加长文本的得分。

  • 示例

假设有两个候选序列 A 和 B,序列 A 有 10 个词,序列 B 有 20 个词。如果设置 length_penalty = 1.0,则序列 B 的得分会乘以 (1 + 1.0 * (20 - 10)) = 11,而序列 A 的得分只乘以 (1 + 1.0 * (10 - 10)) = 1。这会使得序列 A 在 Beam Search 中更有可能被选中。

通过调整 length_penalty 参数,可以控制生成文本的长度分布,满足不同的应用需求,如对话生成、文本摘要、故事创作等。

5 Noising

在大模型中,“noising”(噪声注入)通常是指在模型的输入或内部状态中引入随机性或扰动,以增强模型的泛化能力或改变其行为。以下是几种常见的noising方法及其在大模型中的应用:

  1. 数据增强(Data Augmentation)

  2. 在训练阶段,通过对训练数据添加噪声(如随机替换词、插入无关词、同义词替换等)来增加数据的多样性,提高模型的鲁棒性。

  3. dropout

  4. Dropout 是一种常用的正则化技术,通过在训练过程中随机丢弃(即将输出置为零)一部分神经元的输出,引入噪声,防止模型过拟合。

  5. 随机初始化(Random Initialization)

  6. 在模型训练的开始阶段,权重和偏置的随机初始化也是一种noising形式,它为训练过程提供了不同的起点,有助于避免局部最优。

  7. 学习率退火(Learning Rate Annealing)

  8. 学习率退火通过在训练过程中逐渐减小学习率,可以看作是对模型更新步骤引入的一种噪声退火过程,有助于模型在接近最优解时更细致地探索参数空间。

  9. 批量归一化(Batch Normalization)

  10. 批量归一化通过对每个小批量数据进行归一化处理,引入了一定程度的噪声,有助于加速训练过程并提高模型的泛化能力。

  11. 输入噪声(Input Noise)

  12. 在生成任务中,有时可以在输入序列中引入随机噪声,例如随机mask(遮盖)一些词,迫使模型在生成文本时考虑更多的上下文信息。

  13. 模型扰动(Model Perturbation)

  14. 在模型的内部表示中引入扰动,例如通过添加小的随机扰动或通过随机化模型的某些操作,可以用于测试模型的鲁棒性或用于模型的对抗训练。

  15. 随机特征选择(Random Feature Selection)

  16. 在特征提取阶段,随机选择一部分特征进行训练,可以作为一种noising手段,有助于减少特征间的相互依赖,提高模型的泛化能力。

  17. 随机梯度估计(Stochastic Gradient Estimation)

  18. 使用小批量数据进行梯度估计本身就是一种noising形式,因为每次更新都是基于数据的一个随机子集。

  19. 随机化优化算法(Randomized Optimization Algorithms)

  20. 某些优化算法,如随机梯度下降(SGD)及其变体,通过在每次迭代中随机选择数据点来更新模型参数,引入了噪声。

在大模型中,合理地使用noising技术可以帮助模型更好地学习和泛化,提高其在面对新数据时的表现。然而,noising的引入需要谨慎平衡,过多的噪声可能会导致模型性能下降。

6 Prompt Engineering

  • 定义

Prompt Engineering 是一种技术,通过精心设计的文本提示来激发和指导语言模型,使其能够完成特定的任务或生成特定的内容。

  • 目的

  • 引导模型理解任务需求。

  • 使模型能够展示其能力,即使这些能力在标准训练数据中不常见。

  • 方法

  1. 明确性(Clarity)

  2. 确保提示清晰明确,直接指向所需的输出或行为。

  3. 上下文(Context)

  4. 提供足够的上下文信息,帮助模型理解任务的背景。

  5. 格式(Format)

  6. 使用适当的格式,如列表、问题和答案对等,以适应模型的输入要求。

  7. 示例(Examples)

  8. 提供示例可以帮助模型更好地理解任务,尤其是在需要创造性或特定格式输出时。

  9. 逐步引导(Step-by-step Guidance)

  10. 将复杂任务分解成简单的步骤,并逐步引导模型完成。

  11. 反馈(Feedback)

  12. 使用反馈循环来优化提示,根据模型的输出调整提示内容。

  13. 多样性(Diversity)

  14. 尝试不同的提示风格和语言,以找到最能激发模型的方式。

  15. 限制(Constraints)

  16. 在提示中加入限制条件,如指定输出的长度、风格或特定信息点。

  17. 交互性(Interactivity)

  18. 在可能的情况下,设计交互式提示,允许用户与模型进行多轮对话。

  19. 测试和迭代(Testing and Iteration)

  20. 测试不同的提示,并根据结果进行迭代,以优化性能。

  • 应用场景

  • 问答系统:设计提示以引导模型回答特定问题。

  • 文本摘要:使用提示来指导模型生成文本的摘要。

  • 故事生成:创建提示以激发模型生成连贯的故事。

  • 代码生成:为编程任务设计提示,指导模型生成代码。

  • 等等

  • 示例

假设我们想要使用语言模型来生成关于某个历史事件的简短描述。一个精心设计的提示可能是:



"请简述[事件名称],包括它的主要参与者、发生时间和地点,以及它为何重要。"


这个提示清晰地指出了需要的信息点,并以一种模型容易理解和响应的方式呈现。

7 Latent Variable Models

在大模型中,“Latent Variable Models”(潜在变量模型)是指那些包含隐藏或未观察到的变量的模型,这些变量对于模型的输出有重要影响。潜在变量模型广泛应用于各种领域,包括自然语言处理、计算机视觉和机器学习。

  • 定义

潜在变量模型是一种统计模型,它假设存在一些未观察到的(或隐藏的)变量,这些变量能够解释观测数据中的某些模式或结构。

  • 目的

  • 解释和预测观测数据。

  • 发现数据中的潜在结构或模式。

  • 减少数据的维度,提取特征。

  • 类型

  1. 隐马尔可夫模型(Hidden Markov Model, HMM)

  2. 用于时间序列数据,假设观测数据是由一系列隐藏的状态生成的。

  3. 主成分分析(Principal Component Analysis, PCA)

  4. 一种降维技术,通过线性变换将数据投影到低维空间,提取主要特征。

  5. 因子分析(Factor Analysis)

  6. 用于发现观测变量之间的潜在因子,通常用于社会科学和心理学研究。

  7. 潜在语义分析(Latent Semantic Analysis, LSA)

  8. 一种文本分析方法,用于发现文本集合中的潜在语义结构。

  9. 分自编码器(Variational Autoencoder, VAE)

  10. 一种深度学习模型,通过编码器和解码器学习数据的潜在表示。

  11. 生成对抗网络(Generative Adversarial Networks, GANs)

  12. 通过生成器和判别器的对抗过程生成数据的潜在表示。

  13. 混合模型(Mixture Models)

  14. 假设数据是由多个潜在成分的混合生成的,如高斯混合模型。

  15. 主题模型(Topic Models)

  16. 如潜在狄利克雷分配(Latent Dirichlet Allocation, LDA),用于发现文本集合中的潜在主题。

  • 示例

在自然语言处理中,潜在狄利克雷分配(LDA)可以用于以下任务:

  • 文本主题发现:分析大量文档,发现文档集合中的潜在主题。

  • 文档分类:基于发现的主题对文档进行分类。

  • 信息检索:改进搜索引擎,使其能够根据潜在主题进行更准确的搜索。

潜在变量模型是理解和处理复杂数据集的强大工具,它们通过引入隐藏的变量来捕捉数据中的深层结构。然而,这些模型通常需要复杂的算法来估计潜在变量,并且可能面临解释性挑战。

8 Entropy Constraints

在大模型中,“Entropy Constraints”(熵约束)是一种用于控制生成文本或模型输出多样性的技术。熵在信息论中是衡量随机性的一个指标,高熵意味着高随机性和多样性,而低熵则意味着输出更加确定和一致。

  • 定义

熵约束是一种在生成模型中使用的策略,通过限制或调整输出的概率分布的熵来影响生成结果的多样性和一致性。

  • 目的

  • 控制生成文本的多样性,避免生成过于重复或单一的结果。

  • 确保生成的文本或序列在一定程度上保持随机性,以提高创造性。

  • 方法

  1. 最小熵搜索(Minimum Entropy Search)

  2. 选择那些导致输出概率分布熵最小的候选,以生成更一致的结果。

  3. 熵正则化(Entropy Regularization)

  4. 在损失函数中加入熵项,鼓励模型在训练过程中生成更多样化的输出。

  5. 熵惩罚(Entropy Penalty)

  6. 对于生成的序列,如果其概率分布的熵低于某个阈值,则施加惩罚。

  7. 熵引导(Entropy-Guided)

  8. 在生成过程中,使用熵作为引导,鼓励探索那些导致高熵状态的候选。

  9. 熵阈值(Entropy Threshold)

  10. 设置一个熵的阈值,只有当生成的序列的熈高于这个阈值时,才会被认为是有效的。

  • 示例

假设我们正在使用一个语言模型来生成一段描述,我们希望这段描述既不要太过单调也不要太随机。我们可以通过以下方式应用熵约束:

  • 在生成过程中,计算每个候选序列的概率分布的熵。

  • 选择那些概率分布熵在特定范围内的候选序列,避免选择那些熵过高或过低的序列。

熵约束是一种灵活的策略,可以根据不同的任务和需求进行调整。通过合理地应用熵约束,可以提高生成模型的输出质量和多样性。然而,熵约束的使用需要仔细平衡,以避免过度限制生成结果,导致创造性的损失。

9 Coverage Penalty

在大模型的序列生成任务中,“Coverage Penalty”(覆盖度惩罚)是一种用于改善生成文本质量的技术,特别是在机器翻译、文本摘要等任务中。覆盖度惩罚的目的是确保生成的文本不仅流畅自然,而且能够充分覆盖输入材料或数据的所有重要部分。

  • 定义

覆盖度惩罚是一种在序列生成模型中使用的策略,它通过惩罚那些未能覆盖输入序列所有部分的候选输出,来鼓励模型生成更加全面和准确的文本。

  • 目的

  • 确保生成的文本能够覆盖输入数据的所有重要信息。

  • 避免生成文本时忽略输入中的某些部分,导致信息丢失。

  • 工作原理

  1. 覆盖向量(Coverage Vector)

  2. 在生成过程中,维护一个覆盖向量,用于记录输入序列中已经被翻译或摘要的部分。

  3. 惩罚计算

  4. 在每一步生成过程中,计算当前候选输出的覆盖向量与理想覆盖向量(即所有输入部分都被覆盖)之间的差异。

  5. 惩罚应用

  6. 根据覆盖向量的差异,对候选输出施加惩罚,差异越大,惩罚越重。

  7. 候选选择

  8. 在选择最佳候选时,不仅考虑概率,还要考虑覆盖度惩罚,从而选择既流畅又全面的输出。

  • 示例

假设我们正在进行机器翻译任务,输入是一段法语文本,输出是英语翻译。在翻译过程中,我们希望确保翻译结果不仅语法正确,而且能够覆盖原文的所有内容。通过应用覆盖度惩罚:

  • 在翻译的每一步,我们计算当前翻译的覆盖向量。

  • 如果发现某些原文的部分还没有被翻译,我们在损失函数中加入覆盖度惩罚项。

  • 在选择下一个词时,我们不仅考虑概率最高的词,还要考虑其对覆盖向量的影响。

覆盖度惩罚是一种有效的技术,可以提高生成文本的全面性和准确性。然而,它需要仔细调整,以避免过度惩罚导致生成文本的流畅性和自然性受损。通过平衡覆盖度惩罚和其他生成标准,可以生成既全面又自然的语言输出。

10 Interpolation

在机器学习和人工智能领域,“Interpolation”(插值)的概念通常用于指代在不同数据点之间进行平滑过渡的方法。当应用于大模型或深度学习模型时,插值可以用于增加生成文本的多样性,以下是一些具体的应用方式:

  • 定义

在文本生成的上下文中,插值是通过混合不同模型的输出或同一模型在不同时间步的输出来生成新的文本序列的过程。

  • 目的

  • 通过结合不同的生成策略,提高文本的多样性和创造性。

  • 避免模型生成过于单一或重复的文本。

  • 方法

  1. 模型混合(Model Mixture)

  2. 结合多个预训练模型的输出,每个模型可能具有不同的训练数据或参数设置。

  3. 时间步插值(Time-step Interpolation)

  4. 在序列生成过程中,选择不同时间步的输出进行混合,以引入多样性。

  5. 加权平均(Weighted Averaging)

  6. 对不同模型或时间步的输出给予不同的权重,然后计算加权平均值作为最终输出。

  7. 随机抽样(Stochastic Sampling)

  8. 从多个候选输出中随机选择,或者根据概率分布进行抽样。

  9. 动态插值(Dynamic Interpolation)

  10. 根据上下文信息动态调整不同输出之间的混合比例。

  11. 注意力机制(Attention Mechanism)

  12. 使用注意力机制来确定在插值过程中哪些部分的输出应该获得更多的权重。

  • 示例

假设我们有两个预训练的语言模型,一个擅长生成正式的学术文本,另一个擅长生成口语化的文本。我们可以通过以下方式使用插值来生成文本:

  • 对于给定的输入,让两个模型独立生成文本序列。

  • 然后,根据预定的策略或动态调整的权重,将两个输出混合起来。

  • 最终生成的文本可能既包含学术文本的严谨性,也融入了口语文本的自然流畅性。

通过这种方式,插值可以帮助模型突破单一风格的限制,生成更多样化、更具创造性的文本。然而,插值也需要仔细设计,以确保生成的文本在语义上是连贯的,并且在风格上是和谐的。

11 Human-in-the-loop

“Human-in-the-loop”(人在循环中)是一种集成了人工干预的系统设计方法,尤其在人工智能和机器学习领域中,这种方法允许人类专家参与到数据处理或决策过程中。在大模型的背景下,Human-in-the-loop 可以用于提高模型输出的相关性、准确性和可读性。

  • 定义

Human-in-the-loop 是一种人工智能系统的实现方式,其中人类操作员在决策过程中扮演关键角色,可以对模型的输出进行审查、选择或编辑。

  • 目的

  • 提高输出的质量,确保结果的相关性和准确性。

  • 结合人类的直觉和经验,提高模型对复杂或模糊情况的处理能力。

  • 增强用户对系统的信任度。

  • 方法

  1. 监督学习(Supervised Learning)

  2. 在训练阶段,人类专家标注数据,为模型提供学习的基础。

  3. 主动学习(Active Learning)

  4. 模型主动请求人类专家对不确定的预测进行标注,以提高学习效率。

  5. 后审(Post-editing)

  6. 人类专家审查模型的输出,并进行必要的编辑或更正。

  7. 实时反馈(Real-time Feedback)

  8. 系统允许用户实时提供反馈,模型根据反馈进行调整。

  9. 增量学习(Incremental Learning)

  10. 模型根据人类专家的持续输入逐步更新知识库。

  11. 混合智能(Hybrid Intelligence)

  12. 结合人类的认知能力和机器的计算能力,共同解决问题。

  • 示例

假设我们有一个自动文本摘要系统,它使用大模型来生成文档的摘要。Human-in-the-loop 的应用可能包括:

  • 摘要生成:模型自动生成摘要。

  • 人工审核:专业编辑或领域专家审查自动生成的摘要,评估其准确性和完整性。

  • 反馈循环:编辑者对摘要进行修改,并将这些修改反馈给系统,以便模型学习并改进未来的摘要。

通过Human-in-the-loop,可以确保系统生成的文本不仅快速高效,而且质量高,符合人类的标准和期望。这种方法也有助于提高用户对AI系统的信任,因为它结合了人工智能的速度和规模以及人类判断的深度和细微差别。

12 Frequency Penalty(频率惩罚)

在大模型的文本生成任务中,“Frequency Penalty”(频率惩罚)是一种用于提高输出多样性的技术。频率惩罚通过减少模型重复使用某些词汇的倾向,鼓励生成更多样化的文本。

  • 定义

频率惩罚是一种在语言模型中使用的策略,它通过降低在当前上下文中已经频繁出现的词汇的概率,来减少这些词汇被重复使用的可能性。

  • 目的

  • 增加生成文本的多样性,避免重复使用相同的词汇或短语。

  • 改善文本的自然性和可读性,使生成的文本更贴近人类的语言习惯。

  • 工作原理

  1. 词汇频率统计

  2. 在生成过程中,维护一个统计,记录每个词汇在当前上下文中的出现频率。

  3. 概率调整

  4. 对于频率较高的词汇,通过乘以一个小于1的因子来降低它们在概率分布中的权重。

  5. 惩罚系数

  6. 频率惩罚的强度可以通过一个惩罚系数来控制,该系数决定了降低频率的幅度。

  7. 动态调整

  8. 根据生成过程中的上下文动态调整频率惩罚,以平衡文本的多样性和连贯性。

  • 示例

假设我们正在使用一个语言模型来生成一段描述。如果我们不希望模型重复使用某些词汇,可以应用频率惩罚:

  • 在生成每个词时,检查该词在当前段落或句子中的出现次数。

  • 如果某个词已经出现多次,通过乘以频率惩罚因子(如0.9)来降低它的概率。

  • 这样,模型在选择下一个词时,更倾向于选择那些出现频率较低的词汇。

频率惩罚是一种有效的技术,可以显著提高文本生成的多样性。然而,也需要仔细调整频率惩罚的强度,以避免过度惩罚导致文本失去连贯性或语义上的清晰度。通过平衡频率惩罚和其他生成标准,可以生成既多样又自然的文本。

13 presence惩罚(Presence Penalty)

Presence Penalty(存在惩罚)是一种在自然语言处理和文本生成任务中使用的策略,旨在提高生成文本的多样性和创造性。与频率惩罚侧重于减少高频词汇的重复使用不同,存在惩罚专注于鼓励模型使用尚未在当前文本中出现过的词汇。

  • 定义

存在惩罚是一种调整语言模型输出的方法,通过降低已出现词汇的生成概率,来鼓励模型生成新的、不同的词汇。

  • 目的

  • 促进文本的多样性,避免生成重复或可预测的文本。

  • 帮助模型跳出常规,生成更丰富和有创意的内容。

  • 工作原理

  1. 词汇追踪

  2. 在生成过程中,维护一个集合或列表,记录已经生成的词汇。

  3. 概率调整

  4. 对于已经出现在文本中的词汇,降低它们在概率分布中的权重。

  5. 惩罚阈值

  6. 设置一个惩罚阈值,当词汇已经出现过时,降低其概率至阈值以下。

  7. 动态生成

  8. 在每一步生成过程中动态调整词汇的概率,以反映最新生成的文本内容。

  • 示例

假设我们正在使用一个语言模型来生成一段故事。为了增加故事的多样性,我们可以应用存在惩罚:

  • 在生成每个词时,检查该词是否已经在故事中出现过。

  • 如果词汇是首次出现,保持或增加其概率;如果已经出现过,则降低其概率。

  • 通过这种方式,模型在选择下一个词时,会更倾向于选择那些尚未使用过的词汇。

存在惩罚是一种有效的手段,可以显著提高文本生成的多样性。然而,也需要平衡存在惩罚的强度,以确保生成的文本既新颖又保持语义上的连贯性和逻辑性。通过适当的调整,存在惩罚可以帮助模型生成更加丰富和有吸引力的文本内容。

14 Max Length(最大长度)

在大模型的文本生成任务中,“最大长度”(Max Length)是一个重要的参数,它对生成文本的长度进行限制。这个参数对于控制输出的详细程度、保持文本的紧凑性和相关性起着关键作用。以下是关于最大长度参数的一些详细说明:

  • 定义

最大长度参数指定了模型在生成文本时可以达到的最大字符数或词数。这是一个硬性限制,一旦达到这个长度,模型将停止生成新的文本。

  • 目的

  • 控制生成文本的长度,以适应特定的应用场景或格式要求。

  • 避免生成过长的文本,这可能导致信息的冗余或偏离主题。

  • 工作原理

  1. 长度限制

  2. 在生成过程中,模型会计算当前生成的文本长度,并与最大长度参数进行比较。

  3. 结束条件

  4. 当文本长度达到最大长度限制时,模型会触发结束条件,停止生成新的词或字符。

  5. 多样性与相关性的平衡

  6. 较长的文本可能包含更多信息和细节,但也可能包含不相关或冗余的内容。最大长度参数有助于在两者之间找到平衡。

  • 示例

假设我们正在使用一个语言模型来生成电影评论的摘要。我们可以设置最大长度参数为150个字符:

  • 模型开始生成摘要,并实时监控生成的文本长度。

  • 当生成的摘要达到150个字符时,无论摘要是否完整,模型都会停止生成。

最大长度参数对于确保生成文本的质量和适用性至关重要。然而,设置最大长度时需要考虑文本的完整性和表达的充分性,避免过度限制导致重要信息的丢失。通过合理设置最大长度,可以在保持文本紧凑性的同时,尽可能地传达关键信息。

15 Stop Sequences(停止序列)

在大模型的文本生成任务中,“Stop Sequences”(停止序列)是一种控制生成过程何时结束的机制。通过定义特定的词汇或短语作为停止信号,模型会在生成这些序列时自动终止文本生成,从而控制输出的长度和相关性。以下是关于停止序列的一些详细说明:

  • 定义

停止序列是用户为模型设定的结束生成的标志,可以是一个词、标点符号、短语或任何特定的文本模式。

  • 目的

  • 确保生成的文本在达到某个逻辑结束点时停止,避免无意义的延伸。

  • 控制输出文本的长度,以适应特定的格式或信息密度要求。

  • 工作原理

  1. 序列定义

  2. 用户根据需求定义一个或多个停止序列。

  3. 生成监控

  4. 在文本生成过程中,模型会持续监控生成的文本,检查是否出现了停止序列。

  5. 结束生成

  6. 一旦在生成的文本中检测到停止序列,模型会立即停止生成过程。

  7. 灵活性

  8. 可以设置多个停止序列,以适应不同的文本结构和结束条件。

  • 示例

假设我们正在使用一个语言模型来生成一封正式的邀请函。我们可以设置以下停止序列:

  • 结尾敬语,如 “此致 敬礼” 或 “期待您的回复”。

  • 结束标记,如句号或感叹号。

在生成过程中,一旦模型生成了这些停止序列,它就会认为邀请函已经完整并停止生成。这样,生成的邀请函既具有适当的格式,也避免了不必要的冗余。

停止序列是控制文本生成过程的有效工具,它允许用户根据具体的应用场景和文本结构来定制生成的结束条件。适当地设置停止序列可以提高生成文本的质量和适用性,同时保持文本的自然流畅和逻辑完整性。

16 Seed(种子)

在大模型中,“种子”(Seed)参数是一个关键的概念,特别是在涉及随机性的操作中,如文本生成、模型初始化、数据分割等。

  • 定义

种子是一个用于初始化随机数生成器(RNG)的值。在计算机科学中,随机数生成器通常是一个确定性的算法,它根据输入的种子值产生一系列看似随机的数字。

  • 目的

  • 确保在不同运行或实验中能够复现相同的结果。

  • 用于调试和测试,通过固定种子值来隔离变化因素。

  • 工作原理

  1. 初始化

  2. 在程序开始时,设置随机数生成器的初始种子值。

  3. 生成随机数

  4. 根据种子值,随机数生成器产生一系列“随机”数字。

  5. 重复性

  6. 使用相同的种子值初始化随机数生成器,将产生完全相同的数字序列。

  7. 控制变量

  8. 在实验中,固定种子值可以帮助研究者控制随机性的影响,从而更准确地评估模型性能。

  • 示例

假设我们正在使用一个语言模型来生成文本。为了确保每次运行代码时生成的文本相同,我们可以设置一个固定的种子值:



torch.manual_seed(1234) # 假设使用PyTorch库




在这个例子中,1234 就是种子值。无论何时运行这段代码,只要种子值不变,生成的文本都将是相同的。

种子参数是确保随机过程可预测和可复现的关键工具。在需要稳定性和一致性的应用场景中非常有用。然而,在实际应用中,过度依赖种子来控制随机性可能会限制模型的泛化能力和创新性。因此,种子的使用需要根据具体需求和上下文来平衡。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值