转载:http://blog.csdn.net/v_JULY_v/article/details/6114226
前言:
红黑树作为一种经典而高级的数据结构,相信,已经被不少人实现过,但不是因为程序不够完善而无法运行,就是因为程序完全没有注释,初学者根本就看不懂。
此份红黑树的c源码最初从linux-lib-rbtree.c而来,后经一网友那谁(http://www.cppblog.com/converse/)用c写了出来。在此,向原作者表示敬意。但原来的程序存在没有任何一行注释。没有一行注释的程序,令程序的价值大打折扣。
所以,我特把这份源码放到了windows xp+vc 6.0上,一行一行的完善,一行一行的给它添加注释,至此,红黑树c带注释的源码,就摆在了您眼前,有不妥、不正之处,还望不吝指正。
------------
红黑树的六篇文章:
-------------------------
ok,咱们开始吧。
相信,经过我前俩篇博文对红黑树的介绍,你应该对红黑树有了透彻的理解了(没看过的朋友,可事先查上面的倆篇文章,或与此文的源码剖析对应着看)。
本套源码剖析把重点放在红黑树的3种插入情况,与红黑树的4种删除情况。其余的能从略则尽量简略。
目录:
一、左旋代码分析
二、右旋
三、红黑树查找结点
四、红黑树的插入
五、红黑树的3种插入情况
六、红黑树的删除
七、红黑树的4种删除情况
八、测试用例
好的,咱们还是先从树的左旋、右旋代码,开始(大部分分析,直接给注释):
- //一、左旋代码分析
- /*-----------------------------------------------------------
- | node right
- | / / ==> / /
- | a right node y
- | / / / /
- | b y a b //左旋
- -----------------------------------------------------------*/
- static rb_node_t* rb_rotate_left(rb_node_t* node, rb_node_t* root)
- {
- rb_node_t* right = node->right; //指定指针指向 right<--node->right
- if ((node->right = right->left))
- {
- right->left->parent = node; //好比上面的注释图,node成为b的父母
- }
- right->left = node; //node成为right的左孩子
- if ((right->parent = node->parent))
- {
- if (node == node->parent->right)
- {
- node->parent->right = right;
- }
- else
- {
- node->parent->left = right;
- }
- }
- else
- {
- root = right;
- }
- node->parent = right; //right成为node的父母
- return root;
- }
- //二、右旋
- /*-----------------------------------------------------------
- | node left
- | / / / /
- | left y ==> a node
- | / / / /
- | a b b y //右旋与左旋差不多,分析略过
- -----------------------------------------------------------*/
- static rb_node_t* rb_rotate_right(rb_node_t* node, rb_node_t* root)
- {
- rb_node_t* left = node->left;
- if ((node->left = left->right))
- {
- left->right->parent = node;
- }
- left->right = node;
- if ((left->parent = node->parent))
- {
- if (node == node->parent->right)
- {
- node->parent->right = left;
- }
- else
- {
- node->parent->left = left;
- }
- }
- else
- {
- root = left;
- }
- node->parent = left;
- return root;
- }
- //三、红黑树查找结点
- //----------------------------------------------------
- //rb_search_auxiliary:查找
- //rb_node_t* rb_search:返回找到的结点
- //----------------------------------------------------
- static rb_node_t* rb_search_auxiliary(key_t key, rb_node_t* root, rb_node_t** save)
- {
- rb_node_t *node = root, *parent = NULL;
- int ret;
- while (node)
- {
- parent = node;
- ret = node->key - key;
- if (0 < ret)
- {
- node = node->left;
- }
- else if (0 > ret)
- {
- node = node->right;
- }
- else
- {
- return node;
- }
- }
- if (save)
- {
- *save = parent;
- }
- return NULL;
- }
- //返回上述rb_search_auxiliary查找结果
- rb_node_t* rb_search(key_t key, rb_node_t* root)
- {
- return rb_search_auxiliary(key, root, NULL);
- }
- //四、红黑树的插入
- //---------------------------------------------------------
- //红黑树的插入结点
- rb_node_t* rb_insert(key_t key, data_t data, rb_node_t* root)
- {
- rb_node_t *parent = NULL, *node;
- parent = NULL;
- if ((node = rb_search_auxiliary(key, root, &parent))) //调用rb_search_auxiliary找到插入结
- 点的地方
- {
- return root;
- }
- node = rb_new_node(key, data); //分配结点
- node->parent = parent;
- node->left = node->right = NULL;
- node->color = RED;
- if (parent)
- {
- if (parent->key > key)
- {
- parent->left = node;
- }
- else
- {
- parent->right = node;
- }
- }
- else
- {
- root = node;
- }
- return rb_insert_rebalance(node, root); //插入结点后,调用rb_insert_rebalance修复红黑树
- 的性质
- }
- //五、红黑树的3种插入情况
- //接下来,咱们重点分析针对红黑树插入的3种情况,而进行的修复工作。
- //--------------------------------------------------------------
- //红黑树修复插入的3种情况
- //为了在下面的注释中表示方便,也为了让下述代码与我的倆篇文章相对应,
- //用z表示当前结点,p[z]表示父母、p[p[z]]表示祖父、y表示叔叔。
- //--------------------------------------------------------------
- static rb_node_t* rb_insert_rebalance(rb_node_t *node, rb_node_t *root)
- {
- rb_node_t *parent, *gparent, *uncle, *tmp; //父母p[z]、祖父p[p[z]]、叔叔y、临时结点*tmp
- while ((parent = node->parent) && parent->color == RED)
- { //parent 为node的父母,且当父母的颜色为红时
- gparent = parent->parent; //gparent为祖父
- if (parent == gparent->left) //当祖父的左孩子即为父母时。
- //其实上述几行语句,无非就是理顺孩子、父母、祖父的关系。:D。
- {
- uncle = gparent->right; //定义叔叔的概念,叔叔y就是父母的右孩子。
- if (uncle && uncle->color == RED) //情况1:z的叔叔y是红色的
- {
- uncle->color = BLACK; //将叔叔结点y着为黑色
- parent->color = BLACK; //z的父母p[z]也着为黑色。解决z,p[z]都是红色的问题。
- gparent->color = RED;
- node = gparent; //将祖父当做新增结点z,指针z上移俩层,且着为红色。
- //上述情况1中,只考虑了z作为父母的右孩子的情况。
- }
- else //情况2:z的叔叔y是黑色的,
- {
- if (parent->right == node) //且z为右孩子
- {
- root = rb_rotate_left(parent, root); //左旋[结点z,与父母结点]
- tmp = parent;
- parent = node;
- node = tmp; //parent与node 互换角色
- }
- //情况3:z的叔叔y是黑色的,此时z成为了左孩子。
- //注意,1:情况3是由上述情况2变化而来的。
- //......2:z的叔叔总是黑色的,否则就是情况1了。
- parent->color = BLACK; //z的父母p[z]着为黑色
- gparent->color = RED; //原祖父结点着为红色
- root = rb_rotate_right(gparent, root); //右旋[结点z,与祖父结点]
- }
- }
- else
- {
- // if (parent == gparent->right) 当祖父的右孩子即为父母时。(解释请看本文评论下第23楼,同时,感谢SupremeHover指正!)
- uncle = gparent->left; //祖父的左孩子作为叔叔结点。[原理还是与上部分一样的]
- if (uncle && uncle->color == RED) //情况1:z的叔叔y是红色的
- {
- uncle->color = BLACK;
- parent->color = BLACK;
- gparent->color = RED;
- node = gparent; //同上。
- }
- else //情况2:z的叔叔y是黑色的,
- {
- if (parent->left == node) //且z为左孩子
- {
- root = rb_rotate_right(parent, root); //以结点parent、root右旋
- tmp = parent;
- parent = node;
- node = tmp; //parent与node 互换角色
- }
- //经过情况2的变化,成为了情况3.
- parent->color = BLACK;
- gparent->color = RED;
- root = rb_rotate_left(gparent, root); //以结点gparent和root左旋
- }
- }
- }
- root->color = BLACK; //根结点,不论怎样,都得置为黑色。
- return root; //返回根结点。
- }
- //六、红黑树的删除
- //------------------------------------------------------------
- //红黑树的删除结点
- rb_node_t* rb_erase(key_t key, rb_node_t *root)
- {
- rb_node_t *child, *parent, *old, *left, *node;
- color_t color;
- if (!(node = rb_search_auxiliary(key, root, NULL))) //调用rb_search_auxiliary查找要删除的
- 结点
- {
- printf("key %d is not exist!/n");
- return root;
- }
- old = node;
- if (node->left && node->right)
- {
- node = node->right;
- while ((left = node->left) != NULL)
- {
- node = left;
- }
- child = node->right;
- parent = node->parent;
- color = node->color;
- if (child)
- {
- child->parent = parent;
- }
- if (parent)
- {
- if (parent->left == node)
- {
- parent->left = child;
- }
- else
- {
- parent->right = child;
- }
- }
- else
- {
- root = child;
- }
- if (node->parent == old)
- {
- parent = node;
- }
- node->parent = old->parent;
- node->color = old->color;
- node->right = old->right;
- node->left = old->left;
- if (old->parent)
- {
- if (old->parent->left == old)
- {
- old->parent->left = node;
- }
- else
- {
- old->parent->right = node;
- }
- }
- else
- {
- root = node;
- }
- old->left->parent = node;
- if (old->right)
- {
- old->right->parent = node;
- }
- }
- else
- {
- if (!node->left)
- {
- child = node->right;
- }
- else if (!node->right)
- {
- child = node->left;
- }
- parent = node->parent;
- color = node->color;
- if (child)
- {
- child->parent = parent;
- }
- if (parent)
- {
- if (parent->left == node)
- {
- parent->left = child;
- }
- else
- {
- parent->right = child;
- }
- }
- else
- {
- root = child;
- }
- }
- free(old);
- if (color == BLACK)
- {
- root = rb_erase_rebalance(child, parent, root); //调用rb_erase_rebalance来恢复红黑树性
- 质
- }
- return root;
- }
- //七、红黑树的4种删除情况
- //----------------------------------------------------------------
- //红黑树修复删除的4种情况
- //为了表示下述注释的方便,也为了让下述代码与我的倆篇文章相对应,
- //x表示要删除的结点,*other、w表示兄弟结点,
- //----------------------------------------------------------------
- static rb_node_t* rb_erase_rebalance(rb_node_t *node, rb_node_t *parent, rb_node_t *root)
- {
- rb_node_t *other, *o_left, *o_right; //x的兄弟*other,兄弟左孩子*o_left,*o_right
- while ((!node || node->color == BLACK) && node != root)
- {
- if (parent->left == node)
- {
- other = parent->right;
- if (other->color == RED) //情况1:x的兄弟w是红色的
- {
- other->color = BLACK;
- parent->color = RED; //上俩行,改变颜色,w->黑、p[x]->红。
- root = rb_rotate_left(parent, root); //再对p[x]做一次左旋
- other = parent->right; //x的新兄弟new w 是旋转之前w的某个孩子。其实就是左旋后
- 的效果。
- }
- if ((!other->left || other->left->color == BLACK) &&
- (!other->right || other->right->color == BLACK))
- //情况2:x的兄弟w是黑色,且w的俩个孩子也
- 都是黑色的
- { //由于w和w的俩个孩子都是黑色的,则在x和w上得去掉一黑色,
- other->color = RED; //于是,兄弟w变为红色。
- node = parent; //p[x]为新结点x
- parent = node->parent; //x<-p[x]
- }
- else //情况3:x的兄弟w是黑色的,
- { //且,w的左孩子是红色,右孩子为黑色。
- if (!other->right || other->right->color == BLACK)
- {
- if ((o_left = other->left)) //w和其左孩子left[w],颜色交换。
- {
- o_left->color = BLACK; //w的左孩子变为由黑->红色
- }
- other->color = RED; //w由黑->红
- root = rb_rotate_right(other, root); //再对w进行右旋,从而红黑性质恢复。
- other = parent->right; //变化后的,父结点的右孩子,作为新的兄弟结点
- w。
- }
- //情况4:x的兄弟w是黑色的
- other->color = parent->color; //把兄弟节点染成当前节点父节点的颜色。
- parent->color = BLACK; //把当前节点父节点染成黑色
- if (other->right) //且w的右孩子是红
- {
- other->right->color = BLACK; //兄弟节点w右孩子染成黑色
- }
- root = rb_rotate_left(parent, root); //并再做一次左旋
- node = root; //并把x置为根。
- break;
- }
- }
- //下述情况与上述情况,原理一致。分析略。
- else
- {
- other = parent->left;
- if (other->color == RED)
- {
- other->color = BLACK;
- parent->color = RED;
- root = rb_rotate_right(parent, root);
- other = parent->left;
- }
- if ((!other->left || other->left->color == BLACK) &&
- (!other->right || other->right->color == BLACK))
- {
- other->color = RED;
- node = parent;
- parent = node->parent;
- }
- else
- {
- if (!other->left || other->left->color == BLACK)
- {
- if ((o_right = other->right))
- {
- o_right->color = BLACK;
- }
- other->color = RED;
- root = rb_rotate_left(other, root);
- other = parent->left;
- }
- other->color = parent->color;
- parent->color = BLACK;
- if (other->left)
- {
- other->left->color = BLACK;
- }
- root = rb_rotate_right(parent, root);
- node = root;
- break;
- }
- }
- }
- if (node)
- {
- node->color = BLACK; //最后将node[上述步骤置为了根结点],改为黑色。
- }
- return root; //返回root
- }
- //八、测试用例
- //主函数
- int main()
- {
- int i, count = 100;
- key_t key;
- rb_node_t* root = NULL, *node = NULL;
- srand(time(NULL));
- for (i = 1; i < count; ++i)
- {
- key = rand() % count;
- if ((root = rb_insert(key, i, root)))
- {
- printf("[i = %d] insert key %d success!/n", i, key);
- }
- else
- {
- printf("[i = %d] insert key %d error!/n", i, key);
- exit(-1);
- }
- if ((node = rb_search(key, root)))
- {
- printf("[i = %d] search key %d success!/n", i, key);
- }
- else
- {
- printf("[i = %d] search key %d error!/n", i, key);
- exit(-1);
- }
- if (!(i % 10))
- {
- if ((root = rb_erase(key, root)))
- {
- printf("[i = %d] erase key %d success/n", i, key);
- }
- else
- {
- printf("[i = %d] erase key %d error/n", i, key);
- }
- }
- }
- return 0;
- }
ok,完。
后记:
一、欢迎任何人就此份源码,以及我的前述倆篇文章,进行讨论、提议。
但任何人,引用此份源码剖析,必须得注明作者本人July以及出处。
红黑树系列,已经写了三篇文章,相信,教你透彻了解红黑树的目的,应该达到了。
二、本文完整源码,请到此处下载: