OCT综述—Optical Coherence Tomography (OCT) Imaging Technology论文精读笔记

1.光学相干断层扫描 (OCT) 成像技术基于低相干光的应用,用于以微米和亚微米级分辨率捕获图像,包括三维 (3D) 图像 [1]。OCT 成像技术使用光波(通常具有长波长)来制作表现出光散射的介质的横截面图像。光波渗透到几毫米的介质中,由此产生的散射与某些特定现象相关。

2.OCT 测量的执行方式类似于基于回波的超声成像,但使用的不是声音,而是光学技术来测量背向散射光的幅度和回波时间延迟:OCT 的首次实施,称为时域 OCT,通过扫描参考臂并解调来检测干扰信号的包络与样品内深度的函数关系,从而记录来自生物组织的背向散射反射率曲线。

3.傅里叶域检测的引入通过实现更快的成像速率,使用了傅里叶域 OCT 的两种主要变体:光谱域 OCT (SD-OCT) 和扫描源 OCT (SS-OCT)。SD-OCT 系统采用宽带光源,可同时将多种波长的光传输到样品上。SD-OCT 包括光谱仪,可在空间上分散分量波长,以便使用高速线阵扫描相机进行检测。SS-OCT,也称为光频域反射法,它结合了一个具有快速可调中心频率的窄带激光器,通过使用单个光电探测器,可以将频率检测作为时间的函数。

SD-OCT 系统的设计理念示意图

4.OCT 系统开发的新方向集中在低成本解决方案:在此设置中,具有开环热电冷却的光纤尾纤超发光二极管 (SLD) 用作光源。光纤输出连接到扫描臂。SLD 的中心波长为 830 nm,最大带宽的一半为 42 nm,全宽。光谱仪的设计与前一个类似,具有抛物面镜、折叠镜、透射衍射光栅和两个堆叠的 150 mm 焦距消色差双合透镜,呈环形配置。一个由2048个像素组成的高像素CMOS传感器阵列被用作探测器,尽管只使用了一半的阵列来提高A扫描线速。参考臂光学元件设置在可调长度的镜筒中,以便调整光程以匹配样品臂的光程扫描机构基于 MEMS 反射镜和液态镜头。这种组合允许独立扫描和动态聚焦控制,以实现每位患者的最佳光斑大小。使用液态晶状体可以在多个深度聚焦,而无需调整成像光学元件,从而可以针对不同的患者进行调整。

5.光谱域光学相干断层扫描 (SD-OCT) 是第二代 OCT,可提供高达 5 μm 的不同眼组织的高分辨率图像。

### 关于OCTA-500数据集及其思维导图和论文总结 #### OCTA-500 数据集概述 OCTA-500 是一种公开可用的数据集,专注于光学相干断层扫描血管成像 (OCTA),主要用于研究视网膜微循环以及与多种疾病相关的病理变化。该数据集包含了来自健康个体和患者的大量高质量 OCTA 图像,这些图像经过标准化预处理以提高其在机器学习应用中的适用性[^1]。 #### 思维导图的核心主题 以下是围绕 OCTA-500 数据集构建的思维导图核心主题: 1. **数据采集** - 使用设备:说明所使用的 OCT 设备型号和技术参数。 - 扫描范围:定义覆盖的视网膜区域(如黄斑区、周边区等)。 - 样本多样性:包括不同年龄组、性别比例及疾病的分布情况。 2. **图像预处理** - 背景去除:消除噪声干扰以突出目标结构。 - 自动子带色散补偿:校正由于介质不均匀引起的伪影[^3]。 - k 空间重采样与 FFT:优化重建算法提升分辨率。 3. **临床应用场景** - 阿尔茨海默病诊断:利用 Polar-Net 模型分析 OCTA 特征识别早期病变迹象[^2]。 - 黄斑变性和糖尿病视网膜病变监测:评估新生血管形成程度指导治疗决策。 4. **技术挑战与发展方向** - 提高信噪比:改进硬件设计降低信号衰减影响。 - 增强深度穿透力:探索新型光源波长扩展观察层次。 - 大规模数据分析能力:开发高效计算框架支持海量影像解读需求。 #### 论文总结要点 针对基于 OCTA 技术的研究成果归纳如下几点重要内容: - 结合先进的深度学习方法能够显著改善复杂病症预测精度; - 通过对正常人群基线特征建立全面数据库有助于发现异常模式; - 不同年龄段参与者之间存在明显差异需进一步细化分组策略; ```python import matplotlib.pyplot as plt from sklearn.decomposition import PCA def visualize_pca(data, labels): pca = PCA(n_components=2) reduced_data = pca.fit_transform(data) plt.figure(figsize=(8,6)) scatter = plt.scatter(reduced_data[:,0],reduced_data[:,1],c=labels,cmap='viridis') legend1 = plt.legend(*scatter.legend_elements(), title="Classes", loc="upper right") plt.gca().add_artist(legend1) plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.title('PCA Visualization of Dataset Features') plt.show() ``` 上述代码片段展示了如何使用主成分分析 (PCA) 对多维度特征向量降维并可视化分类效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值