这道题就是简单的dfs,知道根节点后依次边改子节点的父亲。
时间限制:
10000ms
单点时限:
1000ms
内存限制:
256MB
描述
给定一棵包含N个节点的有根树,编号1~N,其中第i号节点具有权值Wi。
现在小Hi要删除树中除了根以外的所有权值小于K的节点。
对于一个节点U,如果它被删除,则它的所有儿子将直接连接到U的父节点上。如果U的父节点也被删除,则连到U的父节点的父节点。以此类推。
例如对于下面的树:
1 / \ 2 3 / / \ 4 5 6 | 7
如果删除3和4,将变成:
1 /|\ 2 5 6 / 7
输入
第一行包含两个整数N和K。
第二行包含N个整数: W1, W2, ..., WN。
第三行包含N个整数: P1, P2, ..., PN。Pi表示i的父节点编号。如果i是根则Pi=0。
对于30%的数据, 1 ≤ N ≤ 100
对于100%的数据, 1 ≤ N ≤ 100000 1 ≤ K, Wi ≤ 100000
输出
输出一行,包含N个整数。
如果i被删除,第i个整数输出-1;否则第i个整数输出i的父节点编号。如果i是根则输出0。
7 10 100 100 5 6 100 100 100 0 1 1 2 3 3 4样例输出
0 1 -1 -1 1 1 2
代码:
#include<iostream>
#include<string.h>
#include<vector>
#include<string.h>
using namespace std;
int logal[100100];
int fa[100100];
int vis[100100];
vector<int>son[100100];
int N,K;
int father;
void dfs(int p)
{
if(!logal[p])
{
for(int i=0;i<son[p].size();i++)
{
int v=son[p][i];
if(!vis[v])//未访问过
{
fa[v]=fa[p];
vis[v]=1;
dfs(v);
}
}
}
else
{
for(int i=0;i<son[p].size();i++)
{
int v=son[p][i];
if(!vis[v])
{
vis[v]=1;
dfs(v);
}
}
}
if(son[p].size()==0)
return;
}
int main()
{
int kk;
cin>>N>>K;
memset(logal,0,sizeof(logal));
memset(vis,0,sizeof(vis));
for(int i=1;i<=N;i++)
{
cin>>kk;
if(kk<K)
logal[i]=0;
else
logal[i]=1;//说明不需要删掉
}
for(int i=1;i<=N;i++)
{
cin>>kk;
fa[i]=kk;
son[kk].push_back(i);
if(kk==0)
father=i;//根节点
}
logal[father]=1;
vis[father]=1;
dfs(father);
for(int i=1;i<=N;i++)
{
if(i==father)
cout<<0<<" ";
else if(logal[i]==0)
cout<<-1<<" ";
else
cout<<fa[i]<<" ";
}
cout<<endl;
return 0;
}