文章目录
💡这节课会带给你
- 通俗了解大模型的工作原理,秒赢 99% 其他人的认知
- 了解指令工程的强大,不只是「说人话」那么简单
- 浅尝 OpenAI API 的调用
开始上课!
一、解读本课大纲
- 课程大纲的设计初心
- 每部分能给你带来什么
- 做自己的选择,定自己的目标
1.1、我们的初心
我们相信,懂 AI、懂编程、懂业务的超级个体,会是 AGI 时代最重要的人。所以我们提出了「AI 全栈工程师」这个概念,让它显得不那么浮夸。
这门课的目标,就是培养「AI 全栈」。
当然,「全栈」涉及的知识面非常广,我们这区区一门课不可能全部涉及。我们能做到的是,在各个方向上都为大家打开一扇门,带大家入门。想走得更深更远,要靠大家自己,和我们的社群。
但是,「入门」并不代表简单、肤浅。我们的课程会在三个层次发力:
- 原理
- 实践
- 认知
不懂原理就不会举一反三,走不了太远。
不懂实践就只能纸上谈兵,做事不落地。
认知不高就无法做对决策,天花板太低。
1.2、大纲解读
模块 | 目的 | 原理 | 实践 | 认知 |
---|---|---|---|---|
AI 大模型基础介绍 | 对大模型有直观的、基础的了解,以展开后续课程学习 | 大模型最基础的原理 | 搞定环境搭建和工具的使用 | 大模型并不神奇,也不神秘 |
Prompt Engineering | 操纵大模型的基础方法 | 让 prompt 更大概率生效的原理 | 使用 prompt 和调用 OpenAI API | 程序思维从确定性到模糊性的变化 |
Function Calling & Plugins | Prompt 和编程结合的当前最高级手段 | Fine-tuning 比 prompt 更稳定 | 使用 Function Calling 解决问题 | 人机接口和机器接口的演化方向 |
AI 编程 | 学会用 AI 辅助编程,助力接下来的学习 | AI 编程也是 prompt engineering | 使用 AI 编程解决问题 | 从 AI 编程看提示工程和 AI 能力的天花板 |
LangChain | 用 LangChain 开发大模型应用 | 什么是 embeddings | 使用 LangChain 开发应用 | 各种大模型应用的技术套路 |
Semantic Kernel | LangChain 之外的另一个选择 | - | 使用 Semantic Kernel 开发应用 | Prompt 和代码分离的思想 |
Fine-tuning | 学会大模型应用技术的天花板 | 机器学习基础 | 训练出自己的独特大模型 | 大模型、GPU 选型 |
AI 产品设计 | 独立完成 AI 产品设计,成为 AI 全栈 | 商业、美学、用户体验的基本原理 | 设计商业模式,绘制原型图,快速做出 demo | 什么是好的产品。技术含量高不代表产品好 |
业务沟通锦囊 | 没有产品经理帮忙,也能直面业务同事 | 与人沟通的基本原理 | 高效收集需求和反馈 | 做得好,多数时候确实不如说得妙 |
AI 绘画 | AI 绘画,陶冶情操 | 文生图的原理 | 使用 prompt 绘画 | - |
1.3、定自己的目标
在全栈的知识面上,一个人短期把三层全占满是不太可能的。
每个人要根据自己的特点、目标和机遇,选择自己的方向。
1.4、FAQ
用好 AI 需要很多数学知识吗?
- 以前真需要,以后可能不那么需要了
有的知识太深,我理解不了怎么办
- 「用到再讲、学以致用」是我们的教学理念。很多知识,用着用着就理解了
- 少部分基础数学知识主要在数据和模型训练部分,可以根据自身情况选择性理解。不理解,也不大影响使用
感觉讲的太浅了,没学到知识怎么办
- 我们尽量在每节课里都涉及一少部分有深度的知识
- 如果感觉不解渴,欢迎在互动环节积极提问,我们现场解答
课听懂了,实际工作中还是不会用怎么办
- NLP的实际问题通常不是端到端由一个算法解决的,我们把拆解问题的思路融入课程中,用心体会
- 既然花钱来上课了,问我!
建议:
- 本课毕竟全球首创,且 AI 领域日新周异高速迭代,必有大量不足之处
- 我们会不断改进,欢迎随时提出宝贵意见。
二、什么是 AI?
思考:你觉得哪些应用算是 AI?
后记
📢博客主页:https://manor.blog.csdn.net
📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 Maynor 原创,首发于 CSDN博客🙉
📢不能老盯着手机屏幕,要不时地抬起头,看看老板的位置⭐
📢专栏持续更新,欢迎订阅:[https://blog.csdn.net/xianyu120/category_12471942.html](