AI全栈大模型工程师(二)课程大纲

该课程旨在培养AI全栈工程师,通过理解大模型原理、实践操作和提升认知,帮助初学者入门。课程覆盖从AI基础知识到OpenAI API的调用,强调在原理、实践和认知三个方面打下基础,适合不同背景的学习者按需选择学习路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡这节课会带给你

  1. 通俗了解大模型的工作原理,秒赢 99% 其他人的认知
  2. 了解指令工程的强大,不只是「说人话」那么简单
  3. 浅尝 OpenAI API 的调用

开始上课!

一、解读本课大纲

  1. 课程大纲的设计初心
  2. 每部分能给你带来什么
  3. 做自己的选择,定自己的目标

1.1、我们的初心

我们相信,懂 AI、懂编程、懂业务的超级个体,会是 AGI 时代最重要的人。所以我们提出了「AI 全栈工程师」这个概念,让它显得不那么浮夸。

这门课的目标,就是培养「AI 全栈」。

当然,「全栈」涉及的知识面非常广,我们这区区一门课不可能全部涉及。我们能做到的是,在各个方向上都为大家打开一扇门,带大家入门。想走得更深更远,要靠大家自己,和我们的社群。

但是,「入门」并不代表简单、肤浅。我们的课程会在三个层次发力:

  1. 原理
  2. 实践
  3. 认知

不懂原理就不会举一反三,走不了太远。

不懂实践就只能纸上谈兵,做事不落地。

认知不高就无法做对决策,天花板太低。

1.2、大纲解读

模块目的原理实践认知
AI 大模型基础介绍对大模型有直观的、基础的了解,以展开后续课程学习大模型最基础的原理搞定环境搭建和工具的使用大模型并不神奇,也不神秘
Prompt Engineering操纵大模型的基础方法让 prompt 更大概率生效的原理使用 prompt 和调用 OpenAI API程序思维从确定性到模糊性的变化
Function Calling & PluginsPrompt 和编程结合的当前最高级手段Fine-tuning 比 prompt 更稳定使用 Function Calling 解决问题人机接口和机器接口的演化方向
AI 编程学会用 AI 辅助编程,助力接下来的学习AI 编程也是 prompt engineering使用 AI 编程解决问题从 AI 编程看提示工程和 AI 能力的天花板
LangChain用 LangChain 开发大模型应用什么是 embeddings使用 LangChain 开发应用各种大模型应用的技术套路
Semantic KernelLangChain 之外的另一个选择-使用 Semantic Kernel 开发应用Prompt 和代码分离的思想
Fine-tuning学会大模型应用技术的天花板机器学习基础训练出自己的独特大模型大模型、GPU 选型
AI 产品设计独立完成 AI 产品设计,成为 AI 全栈商业、美学、用户体验的基本原理设计商业模式,绘制原型图,快速做出 demo什么是好的产品。技术含量高不代表产品好
业务沟通锦囊没有产品经理帮忙,也能直面业务同事与人沟通的基本原理高效收集需求和反馈做得好,多数时候确实不如说得妙
AI 绘画AI 绘画,陶冶情操文生图的原理使用 prompt 绘画-

大模型路线

1.3、定自己的目标

在全栈的知识面上,一个人短期把三层全占满是不太可能的。

每个人要根据自己的特点、目标和机遇,选择自己的方向。

1.4、FAQ

用好 AI 需要很多数学知识吗?

  • 以前真需要,以后可能不那么需要了

有的知识太深,我理解不了怎么办

  • 「用到再讲、学以致用」是我们的教学理念。很多知识,用着用着就理解了
  • 少部分基础数学知识主要在数据和模型训练部分,可以根据自身情况选择性理解。不理解,也不大影响使用

感觉讲的太浅了,没学到知识怎么办

  • 我们尽量在每节课里都涉及一少部分有深度的知识
  • 如果感觉不解渴,欢迎在互动环节积极提问,我们现场解答

课听懂了,实际工作中还是不会用怎么办

  • NLP的实际问题通常不是端到端由一个算法解决的,我们把拆解问题的思路融入课程中,用心体会
  • 既然花钱来上课了,问我!
建议:
  • 本课毕竟全球首创,且 AI 领域日新周异高速迭代,必有大量不足之处
  • 我们会不断改进,欢迎随时提出宝贵意见。

二、什么是 AI?

在这里插入图片描述

思考:你觉得哪些应用算是 AI?

后记

📢博客主页:https://manor.blog.csdn.net

📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 Maynor 原创,首发于 CSDN博客🙉
📢不能老盯着手机屏幕,要不时地抬起头,看看老板的位置⭐
📢专栏持续更新,欢迎订阅:[https://blog.csdn.net/xianyu120/category_12471942.html](

AI大模型工程师是指在人工智能大模型领域具有面技术能力的工程师。他们不仅能够熟练掌握深度学习、机器学习人工智能领域的核心算法和模型架构,还能够进行端到端的开发和实现,具备完整的技术堆知识。 首先,AI大模型工程师需要精通深度学习和机器学习的算法原理,包括神经网络、卷积神经网络、循环神经网络等各种模型结构和优化方法。他们需要能够灵活运用这些算法,解决各种复杂的人工智能问题。 其次,AI大模型工程师需要熟练掌握各种开发工具和框架,例如TensorFlow、PyTorch、Keras等,能够在这些框架下进行模型的实现和训练。 此外,AI大模型工程师还需要具备数据处理和分析的能力,能够处理海量的数据,并能够进行数据挖掘和特征工程,为模型训练提供高质量的数据。 最后,AI大模型工程师需要具备工程实现和部署的能力,能够将训练好的模型应用于实际的场景中,包括模型的优化和性能调优,以及模型的部署和服务化。 总之,AI大模型工程师需要具备面的人工智能技术能力,涵盖算法原理、开发工具、数据处理和工程实现等方面,能够独立完成从建模到部署的流程工作。这样的工程师人工智能技术领域具有很高的竞争力,能够为企业和团队带来更多的价值和发展机会。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIMaynor

觉得有用,要个免费的三连可有?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值