- 题目:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
- 实现思路:
先写出递归式
由此递归式可以知此问题有重叠的子问题,可以用动态规划来实现
- 代码实现(递归)
int f(int m, int n)
{
if( m == 0)
return 1;
else if(n == 0 )
return 1;
else
return f(m-1,n) + f(m, n -1) ;
}
- 代码实现(动态规划)
int uniquePaths(int a, int b) {
if(a == 0)
return 0;
if(b == 0)
return 0;
int A[b][a] = {0};
for(int i = 0; i < b; i++) //第一行初始化为1
A[i][0] =1;
for(int j = 0; j < a; j++) //第一列初试化为1
A[0][j] = 1;
for(int i = 1; i < b ; i++ )
{
for(int j = 1; j < a; j++)
A[i][j] = A[i-1][j] + A[i][j-1]; //累加
}
return A[b-1][a-1];
}
- 复杂度分析
时间复杂度:O(n^2)
空间复杂度:O(n^2)