LeetCode 62不同路径

9 篇文章 0 订阅
6 篇文章 0 订阅
  • 题目:
    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

  • 实现思路:
    先写出递归式
    在这里插入图片描述

由此递归式可以知此问题有重叠的子问题,可以用动态规划来实现

  • 代码实现(递归)
int f(int m, int n)
{
    if( m == 0)
        return 1;
    else if(n == 0 )
        return 1;
    else
        return f(m-1,n) + f(m, n -1) ;
}
  • 代码实现(动态规划)
int uniquePaths(int a, int b) {
        if(a == 0)
            return 0;
        if(b == 0)
            return 0;
        int A[b][a] = {0};
      for(int i = 0; i < b; i++)                     //第一行初始化为1
        A[i][0] =1;
      for(int j = 0; j < a; j++)                     //第一列初试化为1
        A[0][j] = 1;
      for(int i = 1; i < b ; i++ )
      {
          for(int j = 1; j < a; j++)
            A[i][j] = A[i-1][j] + A[i][j-1];           //累加
      }
      return A[b-1][a-1];
    }
  • 复杂度分析
    时间复杂度:O(n^2)
    空间复杂度:O(n^2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值