树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
• 有一个特殊的结点,称为根结点,根节点没有前驱结点
• 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
• 因此,树是递归定义的。
第一张图是我们现实生活中的树,它是根在下,逐渐往上开枝散叶;第二张图是数据结构中定义的树,根在最上面,逐渐向下发展。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
目录
1 树的相关概念
1.1 树的关系
‣ 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为3
‣ 叶节点或终端节点:度为0的节点称为叶节点; 如上图:J、F、K、L、H、I等节点为叶节点
‣ 非终端节点或分支节点:度不为0的节点; 如上图:A、B、C、D...等节点为分支节点
‣ 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
‣ 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
‣ 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
‣ 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为3
‣ 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
‣ 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
‣ 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:F、G互为兄弟节点
‣ 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
‣ 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
‣ 森林:由m(m>0)棵互不相交的树的集合称为森林;
1.2 树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
2 二叉树的相关概念
一棵二叉树是结点的一个有限集合,该集合: 1. 或者为空 2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意: 对于任意的二叉树都是由以下几种情况复合而成的:
2.1 特殊的二叉树
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.2 二叉树的性质
1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h - 1 .
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2,则有 n0= n2+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log(n+1) . (ps: 其中log以2 为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1=n否则无左孩子
3. 若2i+2=n否则无右孩子
其中,满二叉树和完全二叉树结点个数计算详情如下:
高度为h的满二叉树总结点 = 2^0 + 2^1 + ... + 2^(h-1) = 2^h - 1
高度为h的满二叉树总结点:
最多: 2^0 + 2^1 + ... + 2^(h-1) = 2^h - 1
最少: 2^0 + 2^1 + ... + 1 = 2^(h - 1)