nn.Conv2d()中的groups分组参数

文章解释了nn.Conv2d中的groups参数如何影响多通道卷积过程,指出分组可以减少参数量,如设置groups=2时减半,groups=in_dim时变为1/in_dim,有助于理解其作用和优化网络结构。
摘要由CSDN通过智能技术生成

1.参考文章:

【Pytorch】搞懂nn.Conv2d的groups参数的作用 - 知乎 (zhihu.com)

2.理解:

(1)只要你 明白了 多通道的卷积是如何实现的(可以看我的1X1卷积文章),那么这里的分组进行卷积就非常好理解了

        核心:其实,虽然我们知道nn.Conv2d(in_fea,out_fea)就是从in_fea个channels 变成 out_fea个channels, 而且也知道是 由out_fea个kernel干的这件事情。

        但是,每个kernel其实会把 “同一个”位置的 “所有输入channels”全部进行处理。 √

(2)效果:

--如果分groups =2 ,就可以然参数量 变成1/2 上面那篇知乎文章最后的手绘图清晰

--如果分groups =in_dim,自然,可以将参数量 变成1/in_dim

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值