Uva 10917 - Walk Through the Forest (最短路+DP)

题目链接 https://vjudge.net/problem/UVA-10917

【题意】
gbn最近打算穿过一个森林,但是他比较傲娇,于是他决定只走一些特殊的道路,他打算只沿着满足如下条件的(A,B)道路走:存在一条从B出发回家的路,比所有从A出发回家的路径都短。你的任务是计算一共有多少条不同的回家路径。其中起点的编号为1,终点的编号为2.

【思路】
现求出以家为源点的所有点的最短路径,按照题意,如果可以走边(A,B)则dist[A]>dist[B],dist为最短路径,那么就可以构建一个新的有向图,如果dist[A]>dist[B]就添加一条A指向B的有向边,表示可以从A往B走,这样一来这张图是一个DAG,可以动态规划求解,设dp(u)是从公司到达u点的可行路径总数,则dp(u)=sum{dp(v)|存在有向边(v,u)}

#include<bits/stdc++.h>
using namespace std;

const int inf = 0x3f3f3f3f;
const int maxn = 1050;
const int maxm = 500050;

struct Edge {
    int from, to, dist;
    Edge(int f, int t, int d) :from(f), to(t), dist(d) {}
};

struct HeapNode {
    int d, u;
    HeapNode(int dd, int uu) :d(dd), u(uu) {}
    bool operator < (const HeapNode& rhs) const {
        return d > rhs.d;
    }
};

struct Dijkstra {
    int n, m;
    vector<Edge> edges;
    vector<int> g[maxn];
    bool done[maxn];
    int d[maxn];
    int p[maxn];

    void init(int n) {
        this->n = n;
        for (int i = 0; i < n; ++i) g[i].clear();
        edges.clear();
    }

    void add(int from, int to, int dist) {
        edges.push_back(Edge(from, to, dist));
        m = edges.size();
        g[from].push_back(m - 1);
    }

    void dijkstra(int s) {
        priority_queue<HeapNode> que;
        for (int i = 0; i < n; ++i) d[i] = inf;
        d[s] = 0;
        memset(done, 0, sizeof(done));
        que.push(HeapNode(0, s));
        while (!que.empty()) {
            HeapNode x = que.top();
            que.pop();
            int u = x.u;
            if (done[u]) continue;
            done[u] = true;
            for (int i = 0; i < g[u].size(); ++i) {
                Edge& e = edges[g[u][i]];
                if (d[e.to] > d[u] + e.dist) {
                    d[e.to] = d[u] + e.dist;
                    p[e.to] = g[u][i];
                    que.push(HeapNode(d[e.to], e.to));
                }
            }
        }
    }
};

int n, m;
int d[maxn], dp[maxn];
int g[maxn][maxn], g2[maxn][maxn];
Dijkstra solver;

int dfs(int u) {
    if (u == 0) return 1;
    if (dp[u] != -1) return dp[u];
    int ans = 0;
    for (int v = 0; v < n; ++v) {
        if (g2[v][u]) ans += dfs(v);
    }
    return dp[u] = ans;
}

int main() {
    while (scanf("%d", &n) == 1 && n) {
        scanf("%d", &m);
        solver.init(n);
        memset(g, 0, sizeof(g));
        memset(g2, 0, sizeof(g2));
        memset(dp, -1, sizeof(dp));

        for (int i = 0; i < m; ++i) {
            int u, v, c;
            scanf("%d%d%d", &u, &v, &c);
            --u, --v;
            solver.add(u, v, c);
            solver.add(v, u, c);
            g[u][v] = g[v][u] = 1;
        }
        solver.dijkstra(1);
        memcpy(d, solver.d, sizeof(d));

        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (d[j] < d[i] && g[i][j]) g2[i][j] = 1;
                else if (d[i] < d[j] && g[j][i]) g2[j][i] = 1;
            }
        }
        int ans = dfs(1);
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值