F. Tree with Maximum Cost

You are given a tree consisting exactly of ?n vertices. Tree is a connected undirected graph with ?−1n−1 edges. Each vertex ?v of this tree has a value ??av assigned to it.

Let ????(?,?)dist(x,y) be the distance between the vertices ?x and ?y. The distance between the vertices is the number of edges on the simple path between them.

Let's define the cost of the tree as the following value: firstly, let's fix some vertex of the tree. Let it be ?v. Then the cost of the tree is ∑?=1?????(?,?)⋅??∑i=1ndist(i,v)⋅ai.

Your task is to calculate the maximum possible cost of the tree if you can choose ?v arbitrarily.

Input

The first line contains one integer ?n, the number of vertices in the tree (1≤?≤2⋅1051≤n≤2⋅105).

The second line of the input contains ?n integers ?1,?2,…,??a1,a2,…,an (1≤??≤2⋅1051≤ai≤2⋅105), where ??ai is the value of the vertex ?i.

Each of the next ?−1n−1 lines describes an edge of the tree. Edge ?i is denoted by two integers ??ui and ??vi, the labels of vertices it connects (1≤??,??≤?1≤ui,vi≤n, ??≠??ui≠vi).

It is guaranteed that the given edges form a tree.

Output

Print one integer — the maximum possible cost of the tree if you can choose any vertex as ?v.

Note

Picture corresponding to the first example: 

You can choose the vertex 33 as a root, then the answer will be 2⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=1212⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=121.

In the second example tree consists only of one vertex so the answer is always 00.

思路:

            首先设定点1为根,设a[i]为点i的子树的权值和。dp[v]储存点在该点v处的∑i=dist(i,v)⋅ai。(先用dfs遍历树预处理处a[i],dp[i])。

           接下来换根思想。u为该树的根节点,设v是u的子节点 。那么这时候如果换做v为根节点,那么这时候相当于v的子节点距离根节点的距离都减1,非子节点距离都加1.那么dp[v]就等于原有的值减去子节点权值和,加上非子节点权值和。即dp[v]=dp[v]+(dp[1]-dp[v])-dp[v]。

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=2*1e5+10;
ll dp[200000+10];
ll a[maxn];
int head[maxn];
int n,cnt;
ll ans;
struct node{
    int v,next;
}edge[maxn*2];
void add(int u,int v){
    edge[cnt].v=v;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
void dfs(int u,int fa){
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].v;
        if(v!=fa){
            dfs(v,u);
            a[u]+=a[v];
            dp[u]+=a[v]+dp[v];
        }
    }
}
void dfs2(int u,int fa){
    if(u!=1)
        dp[u]=dp[fa]+a[1]-2*a[u];
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].v;
        if(v!=fa){
            dfs2(v,u);
        }
    }
    if(ans<dp[u])ans=dp[u];
}
int main(){
    int u,v;
    cin>>n;
    cnt=0;ans=0;
    memset(head, -1, sizeof(head));
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;i++){
        cin>>a[i];
    }
    for(int i=1;i<n;i++){
        cin>>u>>v;
        add(u,v);
        add(v,u);
    }
    dfs(1,0);//预处理a[i],dp[i]
    dfs2(1,0);//更新dp[i]查找最大值ans
    cout<<ans<<endl;
    return 0;
}

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值