数据异常检测(多元高斯模型)

这篇博客介绍了如何运用Python进行数据异常检测,主要依赖多元高斯模型。作者提供了数据下载链接,并分享了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据下载:

链接:https://pan.baidu.com/s/1ePMpmTBeoECBFFgPZQrPAg
提取码:qkg2

代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.io import loadmat


data = loadmat('data/ex8data1.mat')
x = data['X']
x_val = data['X_val']
y_val = data['y_val']
plt.figure(figsize=(8, 5))
plt.scatter(x[:, 0], x[:, 1], edgecolors='b')
plt.show()


def estimate_gaussian(x):
    mu = x.mean(axis=0)  # 求每列的均值
    sigma2 = x.var(axis=0)  # 求每列的方差,这里自由度为m
    return mu, sigma2


def 
### 多元高斯模型Python中的实现 多元高斯分布是多变量正态分布在多个维度上的推广,在机器学习数据分析领域有着广泛应用。对于多元高斯模型的应用,可以用于异常检测、聚类以及作为其他复杂模型的基础组件。 #### 使用`scikit-learn`库构建多元高斯模型 为了简化开发流程并提高效率,推荐使用成熟的第三方库如 `scikit-learn` 来快速搭建多元高斯模型[^1]。下面是一个简单的例子来说明如何创建一个基于多元高斯分布的概率估计器: ```python from sklearn.datasets import make_blobs import numpy as np from scipy.stats import multivariate_normal import matplotlib.pyplot as plt # 创建模拟数据集 X, _ = make_blobs(n_samples=300, centers=[[0, 0], [-4, -4], [4, 4]], cluster_std=[0.8, 1.2, 0.6]) # 计算均值向量μ和协方差矩阵Σ mu = X.mean(axis=0) sigma = np.cov(X.T) # 定义多元高斯分布对象 rv = multivariate_normal(mu, sigma) # 可视化原始数据及其对应的概率密度函数 plt.scatter(X[:, 0], X[:, 1]) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) pos = np.dstack((xx, yy)) plt.contour(xx, yy, rv.pdf(pos)) plt.show() ``` 这段代码展示了怎样通过计算样本集合的平均数和协方差矩阵来定义一个多维随机变量,并绘制出该分布下的等高线图以直观展现不同位置处的可能性大小。 #### 超参数调整与优化 值得注意的是,虽然这里并没有涉及到显式的训练过程(因为这是一个无监督的学习方法),但在实际应用中可能还需要考虑选择合适的核函数以及其他超参数设置问题[^3]。例如,在某些情况下可能会引入额外的约束条件或者采用特定类型的先验知识来进行更精确地拟合目标分布特性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值