hdu1290:献给杭电五十周年校庆的礼物

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1290


题目大意:n个平面可以将空间最多分为多少块?


参考思路:以前听过一个结论就是平面将空间分隔的每一块对应一个最深点,也就是说每个交点对应一个唯一的块,并且是对应块的最低点(放在坐标轴上就是z值最小),仔细想想确实是这样,除此之外,还有一些块没有最深点,因为这些块向下无限延伸,那么块数 = 交点数 + 向下无限延伸的块数。

1)求交点数:假设f(n)表示n个面对应的最多交点数,那么f(n) = f(n-1) + C(2, n-1),因为n-1个面最多有 C(2, n-1)条交线,第n个面与每条交线都相交便可使增加的交点数最多。

2)求向下无限延伸的块数:n个面都是向下无限延伸的(假设没有绝对的水平面),这个问题其实就是求n条直线可以将平面最多分为多少部分,这个应该好求。


参考代码:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值