题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1290
题目大意:n个平面可以将空间最多分为多少块?
参考思路:以前听过一个结论就是平面将空间分隔的每一块对应一个最深点,也就是说每个交点对应一个唯一的块,并且是对应块的最低点(放在坐标轴上就是z值最小),仔细想想确实是这样,除此之外,还有一些块没有最深点,因为这些块向下无限延伸,那么块数 = 交点数 + 向下无限延伸的块数。
1)求交点数:假设f(n)表示n个面对应的最多交点数,那么f(n) = f(n-1) + C(2, n-1),因为n-1个面最多有 C(2, n-1)条交线,第n个面与每条交线都相交便可使增加的交点数最多。
2)求向下无限延伸的块数:n个面都是向下无限延伸的(假设没有绝对的水平面),这个问题其实就是求n条直线可以将平面最多分为多少部分,这个应该好求。
参考代码: