【AI语音】Coqui TTS:支持1100+语言,跨语种克隆技术的超级文本转语音引擎


前言

在当今数字化飞速发展的时代,文本转语音(TTS)技术已经深入到我们生活和工作的方方面面。从智能语音助手的亲切回应,到有声读物为我们讲述精彩故事,从教育领域的语言学习辅助,到娱乐产业中为虚拟角色赋予生动语音,TTS 技术都发挥着至关重要的作用。Coqui - ai 公司推出的 Coqui TTS 作为一款先进的开源 TTS 项目,为开发者和用户带来了前所未有的便利和创新。本文将深入剖析 Coqui TTS 的模型架构、功能特点、应用场景以及使用方法,带您领略这款神奇工具的魅力。

一、模型概述

Coqui TTS 是 Coqui - ai 团队精心打造的一款基于深度学习的文本转语音项目。它以其开源性和强大功能在 TTS 领域崭露头角。该项目的一大亮点是提供了超过 1100 种语言的预训练模型,这意味着它几乎可以覆盖全球大部分语言的语音合成需求。无论是主流语言还是小众语种,Coqui TTS 都能应对自如,而且支持多说话人,为多样化的语音场景创造了条件。其项目地址位于 GitHub链接,同时还有 Hugging Face Spaces链接 方便用户体验,详细的文档可在 Read the Docs链接 中找到。
在这里插入图片描述

二、技术架构

1、文本到频谱模型

Coqui TTS 采用了多种先进的文本到频谱模型,包括 Tacotron、Tacotron2、Glow - TTS、SpeedySpeech 等。这些模型如同一个个精密的转换器,能够将输入的文本信息准确地转换为语音频谱。例如,Tacotron2 在处理文本和韵律结构方面表现出色,通过复杂的神经网络架构,将文本中的语义和韵律信息逐步映射到频谱特征上,为后续生成高质量的语音奠定了基础。

2、说话人编码器

说话人编码器是 Coqui TTS 实现多说话人功能的关键组件。它通过对说话人语音特征的学习和编码,计算出说话人嵌入。这种嵌入信息能够区分不同说话人的语音特点,从而在合成语音时,根据指定的说话人嵌入准确地模仿其语音风格,实现了多说话人 TTS 的功能。无论是模仿男性、女性还是不同年龄段的说话人声音,都能达到很高的相似度。

3、声码器模型

声码器模型在 Coqui TTS 中也占据重要地位,像 MelGAN、MultiBand - MelGAN、WaveRNN 等声码器负责将频谱转换为最终的语音波形。以 MelGAN 为例,它能够高效地将频谱信息转换为自然流畅的语音波形,并且在保持语音质量的同时,减少了计算资源的消耗。同时,这些声码器模型还支持低延迟的流式语音合成,延迟可低于 200ms,这对于实时语音交互场景至关重要,比如在语音助手的应用中,能够快速响应用户的指令。

三、功能特点

1、跨语种语音克隆

Coqui TTS 基于 tacotron 模型实现了令人瞩目的跨语种语音克隆技术。它采用音素输入表示,并巧妙地引入对抗损失项。这一创新使得它能够真正实现跨语种且无需训练的语音克隆。也就是说,即使是不同语种之间,也可以在没有双语或平行示例训练的情况下进行语音合成。这一功能为多语言环境下的语音合成提供了极大的便利,比如在跨国公司的语音服务系统中,可以轻松地实现多种语言的语音输出,而无需针对每种语言组合进行专门训练。

2、丰富的预训练模型

拥有超过 1100 种语言的预训练模型是 Coqui TTS 的一大王牌。这些预训练模型可以直接使用,帮助开发者快速搭建起满足基本需求的语音合成系统。同时,如果开发者有特殊需求,还可以在这些预训练模型的基础上进行微调,以更好地适应特定的应用场景。例如,对于某个具有特定行业术语的领域,可以在通用语言模型的基础上,利用该领域的文本数据进行微调,提高语音合成在该领域的准确性。

3、灵活的训练工具

Coqui TTS 为用户提供了高度灵活的训练工具。用户可以使用自己的数据来训练新模型或改进现有模型。在训练过程中,可以选择不同的模型架构、优化方法、损失函数以及数据增强等方式。这种灵活性使得开发者能够根据自己的资源和目标,定制出最适合自己应用场景的 TTS 模型。比如,对于资源有限的数据,可以选择更适合小样本训练的方法,而对于对语音质量要求极高的场景,可以尝试更复杂的模型架构和优化策略。

4、语音控制和编辑

该模型还具备强大的语音控制和编辑能力。用户可以对生成的语音进行多维度的调整,比如调整音高、音量、语速、情感等。这就像是为语音合成赋予了艺术创作的能力,用户可以根据需要创造出不同风格的语音。此外,还可以使用时间线编辑器来组合多个语音,创建复杂的场景和对话。这在游戏开发、影视制作等领域有着广泛的应用前景,例如在游戏中可以为不同角色设置不同的语音风格,并通过组合语音来实现丰富的剧情对话。

5、低资源适应性

Coqui TTS 的某些模型,如 YourTTS 模型,具有出色的低资源适应性。它可以处理有限或零样本数据,这对于一些数据获取困难的场景非常有用。比如在某些稀有语种或者特定领域的小样本数据情况下,仍然能够实现一定质量的语音合成。

在这里插入图片描述

四、应用场景

1、语音助手:在智能语音助手领域,Coqui TTS 可以为其提供自然流畅且个性化的语音输出。通过多说话人功能和语音控制功能,可以为用户打造专属的语音助手形象,提高用户与语音助手交互的趣味性和亲和力。例如,用户可以选择自己喜欢的说话人声音,或者根据不同的使用场景调整语音助手的语速和情感。

2、教育领域 :对于教育领域,Coqui TTS 有着广泛的应用。它可以用于制作有声书籍,将文字教材转化为生动的语音内容,方便学生随时随地学习。同时,在语言学习应用中,可以为学习者提供标准的发音示范,帮助他们更好地掌握语言发音。而且,不同语种的语音合成能力可以满足多语言学习环境的需求。

3、娱乐产业 :在游戏、动画、电影等娱乐产业中,Coqui TTS 能够为角色赋予生动的语音表现。通过跨语种语音克隆和语音编辑功能,可以轻松地为不同角色创造独特的语音,无论是不同国家背景的角色还是具有特殊情感表达的角色,都能通过Coqui TTS 实现逼真的语音合成。这大大提高了娱乐作品的沉浸感和吸引力。

4、辅助技术 :对于视障人士等特殊群体,Coqui TTS 可以作为重要的辅助技术。它可以将屏幕上的文字信息转化为语音,帮助视障人士更便捷地获取信息。比如在电子书籍阅读、网页浏览等场景中,为他们提供无障碍的信息获取途径。

5、客户服务 :在自动化的客户服务系统中,Coqui TTS 可以提供语音交互功能。通过多语言支持和语音风格调整,可以为不同地区、不同需求的客户提供更友好、更个性化的服务体验。

五、快速使用

1、安装TTS

一般通过 pip install TTS 命令进行安装。但在安装过程中可能需要注意一些事项,比如可能需要根据提示配置相应的环境,如 Microsoft C++ Build Tools 等,以确保安装顺利进行。

2、运行多说话者和多语言模型

下面代码展示了如何使用一个多说话者和多语言的TTS模型


import torch
from TTS.api import TTS

# 获取设备
# 如果CUDA可用,则使用GPU,否则使用CPU
device = "cuda" if torch.cuda.is_available() else "cpu"

# 列出可用的🐸TTS模型
# 打印出所有可用的TTS模型,供用户选择
print(TTS().list_models())

# 初始化TTS模型
# 使用多语言、多数据集的xtts_v2模型
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)

# 运行TTS模型
# ❗由于这个模型是多语言声音克隆模型,我们必须设置目标speaker_wav和language
# 将文本转换为语音的振幅值列表作为输出
wav = tts.tts(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en")
# 将文本转换为语音并保存到文件
# 使用指定的声音样本和语言将文本"Hello world!"转换为语音,并保存到"output.wav"
tts.tts_to_file(text="Hello world!", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")

3、运行单个说话者模型

# 初始化TTS(文本到语音)模型,指定目标模型名称,并设置进度条为False
# 这里使用的是Tacotron2-DDC模型,专门用于德语语音合成
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False).to(device)

# 运行TTS模型,将文本转换为语音并保存到文件
# 这里将德语文本"Ich bin eine Testnachricht."转换为语音并保存到OUTPUT_PATH指定的路径
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)

# 示例:使用YourTTS进行英语、法语和葡萄牙语的声音克隆
# 重新初始化TTS模型,这次使用的是多语言、多数据集的YourTTS模型
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False).to(device)
# 将英文文本"This is voice cloning."转换为语音,并使用指定的声音样本进行声音克隆,保存到"output.wav"
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
# 将法语文本"C'est le clonage de la voix."转换为语音,并使用指定的声音样本进行声音克隆,保存到"output.wav"
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
# 将葡萄牙语文本"Isso é clonagem de voz."转换为语音,并使用指定的声音样本进行声音克隆,保存到"output.wav"
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")

4、声音转换

将源声音文件source_wav中的声音转换为目标声音文件target_wav中的声音,并保存到output.wav

# 初始化声音转换模型,这里使用的是VCTK数据集上的FreeVC24模型,专门用于多语言声音转换
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to("cuda")
# 将源声音文件"my/source.wav"中的声音转换为目标声音文件"my/target.wav"中的声音,并保存到"output.wav"
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")

5、结合声音克隆和声音转换模型

# 通过这种方式,你可以使用🐸TTS中的任何模型进行声音克隆。

# 初始化TTS模型
# 这里使用的是德语Tacotron2-DDC模型
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")

# 使用TTS模型和声音转换模型进行声音克隆并保存到文件
# tts_with_vc_to_file函数结合了TTS和声音转换的功能,允许我们克隆一个声音
# 这里的文本是德语,询问如何用意大利语表达“我爱你”
tts.tts_with_vc_to_file(
    # 需要转换的文本
    "Wie sage ich auf Italienisch, dass ich dich liebe?",
    # 目标说话者的声音样本文件路径
    speaker_wav="target/speaker.wav",
    # 输出文件的路径
    file_path="output.wav"
)

结语

Coqui - ai TTS 作为一款功能强大、应用广泛的文本转语音工具,在技术架构、功能特点和应用场景等方面都展现出了卓越的性能。尽管在使用过程中可能会遇到一些安装和配置上的小问题,但它所带来的优势远远超过了这些小困扰。无论是开发者还是普通用户,都可以从 Coqui TTS 的开源性、多语言支持、丰富功能中受益。随着技术的不断发展,我们期待 Coqui - ai 公司能够继续优化和改进 Coqui TTS,为语音合成领域带来更多的惊喜。如果您对 Coqui TTS 感兴趣,可以通过上述提到的项目地址进一步了解和探索。

项目资料
Github地址:https://github.com/coqui-ai/tts
项目地址:https://huggingface.co/spaces/coqui/xtts
文档地址:https://tts.readthedocs.io/en/dev/models/xtts.html

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
📖 技术交流:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,加入技术交流群,开启编程探索之旅。
💘精心准备📚500本编程经典书籍、💎AI专业教程,以及高效AI工具。等你加入,与我们一同成长,共铸辉煌未来。
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值