大模型之Spring AI实战系列(三十三):Spring Boot + Ollama 实现本地部署AI聊天应用(10分钟搞定)

### 构建基于SpringOllama本地聊天AI应用程序 #### 项目结构规划 为了创建一个功能齐全的聊天AI应用,需要设计合理的项目结构来支持前后端交互以及模型调用。通常情况下,会采用Maven或Gradle作为构建工具管理依赖项。 #### 添加依赖库 在`pom.xml`(对于Maven)文件中加入必要的依赖包以便能够访问RESTful服务并处理JSON数据交换: ```xml <dependencies> <!-- Spring Boot Starter Web --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- Ollama API Client Library (假设存在这样的库)--> <dependency> <groupId>com.example.ollama</groupId> <artifactId>ollama-client</artifactId> <version>1.0.0</version> </dependency> ... </dependencies> ``` #### 配置Ollama客户端 通过配置类注入Ollama的服务接口实例,在这里可以设置API密钥和其他连接参数: ```java @Configuration public class AppConfig { @Bean public OllamaService ollamaService(){ return new DefaultOllamaServiceImpl("your_api_key_here"); } } ``` #### 创建控制器接收请求 定义HTTP端点用于接受来自前端的消息输入,并转发给后台逻辑层进行对话处理: ```java @RestController @RequestMapping("/chat") public class ChatController { private final OllamaService ollamaService; public ChatController(OllamaService ollamaService){ this.ollamaService = ollamaService; } @PostMapping("/message") ResponseEntity<String> handleMessage(@RequestBody String message){ try{ // 调用Ollama服务获取回复内容 String responseText = ollamaService.getResponse(message); return ResponseEntity.ok(responseText); }catch(Exception e){ logger.error(e.getMessage(),e); return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body(null); } } } ``` #### 测试环境准备 确保安装了Java开发套件(JDK),并且已经设置了正确的JAVA_HOME路径变量;另外还需要下载并启动Ollama服务器以供测试期间使用[^1]。
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值