大模型管理工具Ollama搭建及整合springboot

目录

一、Ollama介绍

1.1 什么是Ollama

1.2 Ollama特点与优势

二、Ollama本地部署

2.1 版本选择

2.2 下载安装包

2.3 执行安装

2.4 Ollama常用命令

三、使用Ollama部署千问大模型

3.1 千问大模型介绍

3.2 部署过程

四、springboot接入Ollama

4.1 引入Ollama依赖

4.2 添加配置文件

4.3 使用Ollama聊天api

五、写在结尾


一、Ollama介绍

1.1 什么是Ollama

Ollama是一个用于部署和运行各种开源大模型的工具,能够帮助用户快速在本地运行各种大模型,极大地简化了大模型在本地运行的过程。对用户来说,只需要通过执行几条命令就能在本地运行开源大模型,如Llama 2等。

官网地址:Ollama

1.2 Ollama特点与优势

Ollama具备如下特点和优势

  • 功能齐全
    • Ollama将模型权重、配置和数据捆绑到一个包中,定义成Modelfile。它优化了设置和配置细节,包括
### 配置Spring Boot以调用本地Ollama DeepSeek API 为了使Spring Boot应用程序能够成功调用本地安装的Ollama DeepSeek服务,需按照特定流程设置项目环境。 #### 创建Spring Boot应用并添加必要依赖 利用[start.spring.io](https://start.spring.io/)初始化一个新的Spring Boot工程,在构建工具选项中选择Maven或Gradle,并指定Java版本。接着,在`Dependencies`部分加入`Spring Web`和其他所需组件来支持HTTP请求处理功能[^2]。对于集成Ollama的支持,则应确保已引入了`sprinɡ-ai-oⅼlama-spring-boot-starter`这一依赖项到项目的`pom.xml`文件里[^4]: ```xml <dependency> <groupId>com.oⅼlama</groupId> <artifactId>sprinḡ-ai-oⅼlama-spring-boot-starter</artifactId> <version>${latest.version}</version> </dependency> ``` 注意替换`${latest.version}`为实际可用的最新版本号。 #### 设置application.yml配置文件 编辑位于资源目录下的`application.yml`文件,定义用于连接至本地运行之Ollama DeepSeek实例的服务URL及其他参数。如下所示是一个典型的YAML配置片段[^5]: ```yaml server: port: 8080 spring: application: name: spring-ai ai: oⅼlama: base-url: http://localhost:11434 chat: options: model: deepseek-r1:1.5b autoconfigure: exclude: - org.spriпgframework.cloud.function.context.config.ContextFunctionCatalogAutoConfiguration ``` 此段落中的端口号(`port`)、基础URL(`base-url`)以及模型名称(`model`)均依据实际情况调整;而自动装配排除列表则防止不必要的Bean被加载入上下文中。 #### 编写控制器类发起API请求 最后一步是在Spring Boot程序内部编写相应的RESTful接口或者Service层逻辑去触发向DeepSeek发送查询命令的动作。下面给出了一种简单的Controller实现方式作为例子: ```java @RestController @RequestMapping("/api/deepseek") public class DeepSeekController { @Autowired private OllamaClient ollamaClient; @PostMapping("/query") public ResponseEntity<String> query(@RequestBody String userInput){ try { // 假设这里有一个方法可以接受字符串输入并向DeepSeek提问 String response = ollamaClient.query(userInput); return new ResponseEntity<>(response, HttpStatus.OK); } catch (Exception e) { return new ResponseEntity<>("Error occurred while processing request.",HttpStatus.INTERNAL_SERVER_ERROR); } } } ``` 在此代码片断中,假设存在名为`OllamaClient`的对象负责执行具体的网络通信操作并与远程AI引擎交互。具体细节取决于所使用的库的具体API设计[^1]。
评论 116
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逆风飞翔的小叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值