MPC与DDP结合案例

MPC与DDP结合概要

MPC与DDP的关系

1. 相似性:

  • 优化过程: 都涉及到优化一个代价函数以求得最优控制输入。
  • 动态模型: 都依赖于系统的动力学模型来预测和更新系统状态。

2. 差异性:

时间尺度:
  • MPC 是在线控制,每次只优化有限预测区间的控制输入,然后在每个时间步长重新优化。
  • DDP 通常是离线优化,一次性优化整个时间区间的控制输入。
优化方式:
  • MPC 在每个时间步都解决一个有限时域的优化问题。
  • DDP 通过递归求解全局的优化问题,利用贝尔曼方程进行全局优化。
计算复杂度:
  • MPC 每次优化只涉及有限步长,适合实时控制,但计算复杂度随预测区间长度增加而增加。
  • DDP 一次性解决全局问题,适合离线优化,计算效率高,但不适合在线实时调整。

3. 结合使用:

MPC-DDP混合方法: 在一些应用中,MPC和DDP可以结合使用。DDP可以用于生成全局的轨迹优化,而M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值