强化学习与控制模型结合例子

强化学习与模型控制结合

强化学习(Reinforcement Learning, RL)与控制模型结合,可以通过整合传统控制理论和现代RL算法,利用控制模型提供的动态信息和稳定性保障,同时利用RL的学习能力优化控制策略。这种结合的方式被称为模型辅助强化学习(Model-Assisted Reinforcement Learning)或模型预测控制强化学习(Model Predictive Control with Reinforcement Learning, MPC-RL)

理论背景

1、控制模型(Control Model):

  • 控制模型描述了系统的动力学,即如何从当前状态通过执行动作转移到下一个状态。
  • 传统的控制理论使用控制模型来设计控制器,如PID控制器、LQR(线性二次调节器)等。

2、强化学习(Reinforcement Learning):

  • RL通过与环境交互,学习一种策略,使得累积奖励最大化。
  • 常见的RL算法包括Q-learning、DQN(深度Q网络)、PPO(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值