凸优化学习笔记2

Chapter 3 Convex functions 凸函数的相关内容

3.1 Basic properties and examples

Definition(定义1): d o m f \mathbf{dom}f domf is a convex set, 0 ≤ θ ≤ 1 0\leq\theta\leq 1 0θ1, f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)\leq\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y).

  • f f f is concave if − f -f f is convex.

  • (定义2) f f f is convex ⇔ \Leftrightarrow for all x ∈ d o m f x\in\mathbf{dom}f xdomf and all v v v, g ( t ) = f ( x + t v ) g(t)=f(x+tv) g(t)=f(x+tv) is convex, t ∈ { t ∣ x + t v ∈ d o m f } t\in\{t|x+tv\in\mathbf{dom}f\} t{tx+tvdomf}).

  • extended-value extension:
    f ~ ( x ) = { f ( x ) x ∈ d o m f ∞ x ∉ d o m f . \tilde{f}(x)=\begin{cases} f(x) & x\in\mathbf{dom}f\\ \infty & x\notin\mathbf{dom}f. \end{cases} f~(x)={f(x)xdomfx/domf.

    • indicator function:
      I ~ C ( x ) = { 0 x ∈ C ∞ x ∉ C . \tilde{I}_C(x)=\begin{cases} 0 & x\in C\\ \infty & x\notin C. \end{cases} I~C(x)={0xCx/C.
  • (定义3) f f f is differentiable, f f f is convex ⇔ \Leftrightarrow d o m f \mathbf{dom}f domf is convex, f ( y ) ≥ f ( x ) + ∇ f ( x ) T ( y − x ) f(y)\geq f(x)+\nabla f(x)^\mathrm{T}(y-x) f(y)f(x)+f(x)T(yx) for all x , y ∈ d o m f x,y\in\mathbf{dom}f x,ydomf.

  • (定义4) f f f is twice differentiable, f f f is convex ⇔ \Leftrightarrow d o m f \mathbf{dom}f domf is convex, for all x ∈ d o m f x\in\mathbf{dom}f xdomf, ∇ 2 f ( x ) ⪰ 0 \nabla^2f(x)\succeq 0 2f(x)0.

  • Examples

    • Exponential. e a x e^{ax} eax is convex on R \mathbb{R} R, for any a ∈ R a\in\mathbb{R} aR.
    • Powers. x a x^a xa is convex on R + + \mathbb{R}_{++} R++ when a ≥ 1 a\geq 1 a1 or a ≤ 0 a\leq 0 a0, and concave for 0 ≤ a ≤ 1 0\leq a\leq 1 0a1.
    • Powers of absolute value. ∣ x ∣ p \vert x\vert^p xp, for p ≥ 1 p\geq 1 p1, is convex on R \mathbb{R} R.
    • Logarithm. log ⁡ x \log x logx is concave on R + + \mathbb{R}_{++} R++.
    • Negative entropy. x log ⁡ x x\log x xlogx (either on R + + \mathbb{R}_{++} R++ or on R + \mathbb{R}_+ R+, defined as 0 for x = 0 x=0 x=0) is convex.
    • Norms. Every norm on R n \mathbb{R}^n Rn is convex.
    • Max function. f ( x ) = m a x { x 1 , … , x n } f(x)=max\{x_1,\ldots,x_n\} f(x)=max{x1,,xn} is convex on R n \mathbb{R}^n Rn.
    • Quadratic-over-linear function. The function f ( x , y ) = x 2 / y f(x,y)=x^2/y f(x,y)=x2/y, with d o m f = R × R + + = { ( x , y ) ∈ R 2 ∣ y > 0 } \mathbf{dom}f=\mathbf{R}\times\mathbf{R}_{++}=\{(x,y)\in\mathbb{R}^2\vert y>0\} domf=R×R++={(x,y)R2y>0}, is convex.
    • Log-sum-exp. The function f ( x ) = log ⁡ ( e x 1 + ⋯ + e x n ) f(x)=\log(e^{x_1}+\cdots+e^{x_n}) f(x)=log(ex1++exn) is convex on R n \mathbb{R}^n Rn.
    • Geometric mean. The geometric mean f ( x ) = ( ∏ i = 1 n x i ) 1 / n f(x)=(\prod_{i=1}^n x_i)^{1/n} f(x)=(i=1nxi)1/n is concave on d o m f = R + + n \mathbf{dom}f=\mathbb{R}_{++}^n domf=R++n.
    • Log-determinant. The function f ( X ) = log ⁡ det ⁡ X f(X)=\log\det X f(X)=logdetX is concave on d o m f = S + + n \mathbf{dom}f=\mathbf{S}_{++}^n domf=S++n.
  • Sublevel sets: α \alpha α-sublevel set C α = { x ∈ d o m f ∣ f ( x ) ≤ α } C_\alpha=\{x\in\mathbf{dom}f\vert f(x)\leq\alpha\} Cα={xdomff(x)α}. Sublevel sets of a convex function are convex for any value of α \alpha α.

    • If f f f is concave, then its α \alpha α-superlevel set { x ∈ d o m f ∣ f ( x ) ≥ α } \{x\in\mathbf{dom}f\vert f(x)\geq\alpha\} {xdomff(x)α} is a convex set.
  • Epigraph: graph { ( x , f ( x ) ) ∣ x ∈ d o m f } \{(x,f(x))\vert x\in\mathbf{dom}f\} {(x,f(x))xdomf}, epigraph e p i f = { ( x , t ) ∣ x ∈ d o m f , f ( x ) ≤ t } \mathbf{epi}f=\{(x,t)\vert x\in\mathbf{dom}f,f(x)\leq t\} epif={(x,t)xdomf,f(x)t}, hypograph h y p o f = { ( x , t ) ∣ t ≤ f ( x ) } \mathbf{hypo}f=\{(x,t)\vert t\leq f(x)\} hypof={(x,t)tf(x)}.

    • A function is convex ⇔ \Leftrightarrow its epigraph is a convex set.
    • A function is concave ⇔ \Leftrightarrow its hypograph is a convex set.
  • Jensen’s inequality: f ( E x ) ≤ E f ( x ) f(\mathbf{E}x)\leq\mathbf{E}f(x) f(Ex)Ef(x), x x x is a random variable such that x ∈ d o m f x\in\mathbf{dom}f xdomf with probability one, and f f f is convex.

    • a θ b 1 − θ ≤ θ a + ( 1 − θ ) b a^\theta b^{1-\theta}\leq\theta a+(1-\theta)b aθb1θθa+(1θ)b for a , b ≥ 0 a,b\geq 0 a,b0 and 0 ≤ θ ≤ 1 0\leq\theta\leq 1 0θ1, by convexity of − log ⁡ x -\log x logx.
      • ∑ i = 1 n x i y i ≤ ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p ( ∑ i = 1 n ∣ y i ∣ q ) 1 / q \displaystyle\sum_{i=1}^nx_iy_i\leq\left(\sum_{i=1}^n\vert x_i\vert^p\right)^{1/p}\left(\sum_{i=1}^n\vert y_i\vert^q\right)^{1/q} i=1nxiyi(i=1nxip)1/p(i=1nyiq)1/q for p > 1 p>1 p>1, 1 / p + 1 / q = 1 1/p+1/q=1 1/p+1/q=1 and x , y ∈ R n x,y\in\mathbb{R}^n x,yRn, by taking a = ∣ x i ∣ p ∑ j = 1 n ∣ x i ∣ p a=\frac{\vert x_i\vert^p}{\sum_{j=1}^n\vert x_i\vert^p} a=j=1nxipxip, b = ∣ y i ∣ q ∑ j = 1 n ∣ y i ∣ q b=\frac{\vert y_i\vert^q}{\sum_{j=1}^n\vert y_i\vert^q} b=j=1nyiqyiq, θ = 1 / p \theta=1/p θ=1/p and summing over i i i.
3.2 Operations that preserve convexity
  • nonnegative weighted sums: a nonnegative weighted sum of convex functions f = w 1 f 1 + ⋯ + w m f m f=w_1f_1+\cdots+w_mf_m f=w1f1++wmfm is convex.
    • a nonnegative weighted sum of concave functions is concave.
  • composition with an affine mapping: f : R n → R f:\mathbb{R}^n\rightarrow\mathbb{R} f:RnR, A ∈ R A\in\mathbb{R} AR, b ∈ R n b\in\mathbb{R}^n bRn, g ( x ) = f ( A x + b ) g(x)=f(Ax+b) g(x)=f(Ax+b), then if f f f is convex, so is g g g; if f f f is concave, so is g g g.
  • pointwise maximum and supremum: if f 1 , … , f m f_1,\ldots,f_m f1,,fm are convex, then their pointwise maximum f ( x ) = max ⁡ { f 1 ( x ) , … , f m ( x ) } f(x)=\max\{f_1(x),\ldots,f_m(x)\} f(x)=max{f1(x),,fm(x)} is also convex.
    • If for each y ∈ A y\in\mathcal{A} yA, f ( x , y ) f(x,y) f(x,y) is convex in x x x, then g ( x ) = sup ⁡ y ∈ A f ( x , y ) \displaystyle g(x)=\sup_{y\in\mathcal{A}}f(x,y) g(x)=yAsupf(x,y) is convex in x x x.
    • The pointwise infimum of a set of concave functions is a concave function.
    • support function: S C ( x ) = sup ⁡ { x T y ∣ y ∈ C } S_C(x)=\sup\{x^\mathrm{T}y\vert y\in C\} SC(x)=sup{xTyyC} , d o m S C = { x ∣ sup ⁡ y ∈ C x T y < ∞ } \mathbf{dom}S_C=\{x\vert \sup_{y\in C}x^\mathrm{T}y< \infty\} domSC={xsupyCxTy<} is convex.
    • almost every convex function can be expressed as the pointwise supremum of a family of affine functions.
  • composition: f ( x ) = h ( g ( x ) ) f(x)=h(g(x)) f(x)=h(g(x))
    • scalar composition: h : R → R h:\mathbb{R}\rightarrow\mathbb{R} h:RR, g : R n → R g:\mathbb{R}^n\rightarrow\mathbb{R} g:RnR
      • f f f is convex if h h h is convex, h ~ \tilde{h} h~ is nondecreasing, and g g g is convex
      • f f f is convex if h h h is convex, h ~ \tilde{h} h~ is nonincreasing, and g g g is concave
      • f f f is concave if h h h is concave, h ~ \tilde{h} h~ is nondecreasing, and g g g is concave
      • f f f is concave if h h h is concave, h ~ \tilde{h} h~ is nonincreasing, and g g g is convex
    • vector composition: h : R k → R h:\mathbb{R}^k\rightarrow\mathbb{R} h:RkR, g i : R n → R g_i:\mathbb{R}^n\rightarrow\mathbb{R} gi:RnR: similar derivations
  • minimization: f f f is convex in ( x , y ) (x,y) (x,y), C C C is a convex nonempty set ⇒ \Rightarrow g ( x ) = inf ⁡ y ∈ C f ( x , y ) g(x)=\displaystyle\inf_{y\in C}f(x,y) g(x)=yCinff(x,y) is convex in x x x.
  • perspective: g ( x , t ) = t f ( x / t ) g(x,t)=tf(x/t) g(x,t)=tf(x/t). f f f is a convex function ⇒ \Rightarrow g g g is convex. Similarly, if f f f is concave, then so is g g g.
3.3 The conjugate function
  • definition: f ∗ ( y ) = sup ⁡ x ∈ d o m f ( y T x − f ( x ) ) f^*(y)=\displaystyle\sup_{x\in\mathbf{dom}f}(y^\mathrm{T}x-f(x)) f(y)=xdomfsup(yTxf(x)), a convex function.
  • basic properties:
    • Fenchel’s inequality: f ( x ) + f ∗ ( y ) ≥ x T y f(x)+f^*(y)\geq x^\mathrm{T}y f(x)+f(y)xTy.
    • if f f f is convex, and f f f is closed (i.e., e p i f \mathbf{epi}f epif is a closed set), then f ∗ ∗ = f f^{**}=f f=f.
    • f f f is convex and differentiable with d o m f = R n \mathbf{dom}f=\mathbb{R}^n domf=Rn, let z ∈ R n z\in\mathbb{R}^n zRn be arbitrary and define y = ∇ f ( z ) y=\nabla f(z) y=f(z), then f ∗ ( y ) = z T ∇ f ( z ) − f ( z ) f^*(y)=z^\mathrm{T}\nabla f(z)-f(z) f(y)=zTf(z)f(z).
    • g ( x ) = a f ( x ) + b g(x)=af(x)+b g(x)=af(x)+b, a > 0 a>0 a>0, b ∈ R b\in\mathbb{R} bR, then g ∗ ( y ) = a f ∗ ( y / a ) − b g^*(y)=af^*(y/a)-b g(y)=af(y/a)b; g ( x ) = f ( A x + b ) g(x)=f(Ax+b) g(x)=f(Ax+b), A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n nonsingular, b ∈ R n b\in\mathbb{R}^n bRn, then g ∗ ( y ) = f ∗ ( A − T y ) − b T A − T y g^*(y)=f^*(A^{-\mathrm{T}}y)-b^\mathrm{T}A^{-\mathrm{T}}y g(y)=f(ATy)bTATy.
    • If f ( u , v ) = f 1 ( u ) + f 2 ( v ) f(u,v)=f_1(u)+f_2(v) f(u,v)=f1(u)+f2(v), f 1 f_1 f1 and f 2 f_2 f2 are convex functions with conjugates f 1 ∗ f_1^* f1 and f 2 ∗ f_2^* f2, respectively, then f ∗ ( w , z ) = f 1 ∗ ( w ) + f 2 ∗ ( z ) f^*(w,z)=f_1^*(w)+f_2^*(z) f(w,z)=f1(w)+f2(z).
3.4 Quasiconvex functions
  • definition(定义1): d o m f \mathbf{dom}f domf and all sublevel sets S α = { x ∈ d o m f ∣ f ( x ) ≤ α } S_\alpha=\{x\in\mathbf{dom}f\vert f(x)\leq\alpha\} Sα={xdomff(x)α} for α ∈ R \alpha\in\mathbb{R} αR are convex.
    • a function is quasiconcave if − f -f f is quasiconvex, i.e., every superlevel set { x ∣ f ( x ) ≥ α } \{x\vert f(x)\geq\alpha\} {xf(x)α} is convex.
    • a function that is both quasiconvex and quasiconcave is called quasilinear.
  • basic properties:
    • (定义2) f f f is quasiconvex ⇔ \Leftrightarrow d o m f \mathbf{dom}f domf is convex, x , y ∈ d o m f x,y\in\mathbf{dom}f x,ydomf, 0 ≤ θ ≤ 1 0\leq\theta\leq 1 0θ1, f ( θ x + ( 1 − θ ) y ) ≤ max ⁡ { f ( x ) , f ( y ) } f(\theta x+(1-\theta)y)\leq\max\{f(x),f(y)\} f(θx+(1θ)y)max{f(x),f(y)}.
    • f f f is quasiconvex ⇔ \Leftrightarrow its restriction to any line intersecting its domain is quasiconvex.
    • f : R → R f:\mathbb{R}\rightarrow\mathbb{R} f:RR is quasiconvex ⇔ \Leftrightarrow (at least one condition holds)
      • f f f is nondecreasing
      • f f f is nonincreasing
      • ∃ c ∈ d o m f \exists c\in\mathbf{dom}f cdomf, for t ≤ c t\leq c tc and t ∈ d o m f t\in\mathbf{dom}f tdomf, f f f is nonincreasing; for t ≥ c t\geq c tc and t ∈ d o m f t\in\mathbf{dom}f tdomf, f f f is nondecreasing
  • (定义3) f f f is differentiable, f f f is quasiconvex ⇔ \Leftrightarrow d o m f \mathbf{dom}f domf is convex, x , y ∈ d o m f x,y\in\mathbf{dom}f x,ydomf, f ( y ) ≤ f ( x ) ⇒ ∇ f T ( x ) ( y − x ) ≤ 0 f(y)\leq f(x)\Rightarrow\nabla f^\mathrm{T}(x)(y-x)\leq 0 f(y)f(x)fT(x)(yx)0.
  • (定义4) f f f is twice differentiable:
    • f f f is quasiconvex ⇒ \Rightarrow x ∈ d o m f x\in\mathbf{dom}f xdomf, y ∈ R n y\in\mathbb{R}^n yRn, y T ∇ f ( x ) = 0 ⇒ y T ∇ 2 f ( x ) y ≥ 0 y^\mathrm{T}\nabla f(x)=0\Rightarrow y^\mathrm{T}\nabla^2 f(x) y\geq 0 yTf(x)=0yT2f(x)y0.
    • y T ∇ f ( x ) = 0 ⇒ y T ∇ 2 f ( x ) y > 0 y^\mathrm{T}\nabla f(x)=0\Rightarrow y^\mathrm{T}\nabla^2 f(x) y> 0 yTf(x)=0yT2f(x)y>0 for all x ∈ d o m f x\in\mathbf{dom}f xdomf and all y ∈ R n y\in\mathbb {R}^n yRn, y ≠ 0 y\neq 0 y=0, then f f f is quasiconvex.
  • operations that preserve quasiconvexity
    • nonnegative weighted maximum: f = max ⁡ { w 1 f 1 , … , w m f m } f=\max\{w_1f_1,\ldots,w_mf_m\} f=max{w1f1,,wmfm} with w i ≥ 0 w_i\geq 0 wi0 and f i f_i fi quasiconvex, is quasiconvex.
    • composition:
      • g : R n → R g:\mathbb{R}^n\rightarrow\mathbb{R} g:RnR is quasiconvex, h : R → R h:\mathbb{R}\rightarrow\mathbb{R} h:RR is nondecreasing, f = h ∘ g f=h\circ g f=hg is quasiconvex.
      • f f f is quasiconvex, g ( x ) = f ( A x + b ) g(x)=f(Ax+b) g(x)=f(Ax+b) is quasiconvex.
      • f f f is quasiconvex, g ~ ( x ) = f ( ( A x + b ) / ( c T x + d ) ) \tilde{g}(x)=f((Ax+b)/(c^\mathrm{T}x+d)) g~(x)=f((Ax+b)/(cTx+d)) is quasiconvex on { x ∣ c T x + d > 0 , ( A x + b ) / ( c T x + d ) ∈ d o m f } \{x\vert c^\mathrm{T}x+d>0,(Ax+b)/(c^\mathrm{T}x+d)\in\mathbf{dom}f\} {xcTx+d>0,(Ax+b)/(cTx+d)domf}.
    • minimization: f ( x , y ) f(x,y) f(x,y) is quasiconvex jointly in x x x and y y y, C C C is a convex set, then g ( x ) = inf ⁡ y ∈ C f ( x , y ) g(x)=\displaystyle\inf_{y\in C}f(x,y) g(x)=yCinff(x,y) is quasiconvex.
  • representation via family of convex functions: f ( x ) ≤ t ⇔ ϕ t ( x ) ≤ 0 f(x)\leq t\Leftrightarrow\phi_t(x)\leq 0 f(x)tϕt(x)0.
3.5 Log-concave and log-convex functions
  • definition(定义1):
    • log-concave: f ( x ) > 0 f(x)>0 f(x)>0 for all x ∈ d o m f x\in\mathbf{dom}f xdomf and log ⁡ f \log f logf is concave.
    • log-convex: f ( x ) > 0 f(x)>0 f(x)>0 for all x ∈ d o m f x\in\mathbf{dom}f xdomf and log ⁡ f \log f logf is convex.
  • (定义2) f : R n → R f:\mathbb{R}^n\rightarrow\mathbb{R} f:RnR with convex domain and f ( x ) > 0 f(x)>0 f(x)>0 for all x ∈ d o m f x\in\mathbf{dom}f xdomf is log-concave ⇔ \Leftrightarrow for all x , y ∈ d o m f x,y\in\mathbf{dom}f x,ydomf and 0 ≤ θ ≤ 1 0\leq\theta\leq 1 0θ1, f ( θ x + ( 1 − θ ) y ) ≥ f θ ( x ) f 1 − θ ( y ) f(\theta x+(1-\theta)y)\geq f^\theta(x)f^{1-\theta}(y) f(θx+(1θ)y)fθ(x)f1θ(y).
  • properties:
    • (定义3) f f f is twice differentiable with d o m f \mathrm{dom}f domf convex. f f f is log-convex ⇔ \Leftrightarrow for all x ∈ d o m f x\in\mathbf{dom}f xdomf, f ( x ) ∇ 2 f ( x ) ⪰ ∇ f ( x ) ∇ T f ( x ) f(x)\nabla^2f(x)\succeq \nabla f(x)\nabla^\mathrm{T} f(x) f(x)2f(x)f(x)Tf(x); f f f is log-concave ⇔ \Leftrightarrow for all x ∈ d o m f x\in\mathbf{dom}f xdomf, f ( x ) ∇ 2 f ( x ) ⪯ ∇ f ( x ) ∇ T f ( x ) f(x)\nabla^2f(x)\preceq \nabla f(x)\nabla^\mathrm{T} f(x) f(x)2f(x)f(x)Tf(x).
    • Log-convexity and log-concavity are closed under multiplication and positive scaling.
    • Log-convexity is preserved under sums. If f ( x , y ) f(x,y) f(x,y) is log-convex in x x x for each y ∈ C y\in C yC, g ( x ) = ∫ C f ( x , y ) d y g(x)=\int_Cf(x,y)\mathrm{d}y g(x)=Cf(x,y)dy is log-convex.
    • If f : R n × R m → R f:\mathbb{R}^n\times\mathbb{R}^m\rightarrow\mathbb{R} f:Rn×RmR is log-concave, then g ( x ) = ∫ f ( x , y ) d y g(x)=\int f(x,y)\mathrm{d}y g(x)=f(x,y)dy is a log-concave function of x x x.
3.6 Convexity with respect to generalized inequalities
  • K-nondecreasing: f : R n → R f:\mathbb{R}^n\rightarrow\mathbb{R} f:RnR, x ⪯ K y ⟹ x\preceq_Ky\Longrightarrow xKy f ( x ) ≤ f ( y ) f(x)\leq f(y) f(x)f(y).

  • K-increasing: f : R n → R f:\mathbb{R}^n\rightarrow\mathbb{R} f:RnR, x ⪯ K y , x ≠ y ⟹ x\preceq_Ky,x\neq y\Longrightarrow xKy,x=y f ( x ) < f ( y ) f(x)< f(y) f(x)<f(y).

  • f f f is differentiable with convex domain is K-nondecreasing ⇔ \Leftrightarrow ∇ f ( x ) ⪰ K ∗ 0 \nabla f(x)\succeq_K^* 0 f(x)K0.

  • f : R n → R m f:\mathbb{R}^n\rightarrow\mathbb{R}^m f:RnRm is K-convex: for all x x x, y y y, and 0 ≤ θ ≤ 1 0\leq\theta\leq 1 0θ1, f ( θ x + ( 1 − θ ) y ) ⪯ K θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)\preceq_K\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)Kθf(x)+(1θ)f(y).

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值