一句话让AI训练AI!20分钟微调羊驼大模型,从数据收集到训练全包了

只需一句话,描述你想要大模型去做什么。

就有一系列AI自己当“模型训练师”,帮你完成从生成数据集到微调的所有工作。

比如让70亿参数羊驼大模型学会优化GPT-4提示词,整个过程只要20分钟。

img

秘诀就是网友分享的一个可以帮咱自动训练模型的AI工具:

它能帮你搞定数据收集、写代码等一系列操作,你要做的就是用人话描述你要什么,然后坐等即可。

可能是全世界最简单的大模型微调方法了(手动狗头)。

并且成本也不高,羊驼这个例子花费就不超15美元(合100来块人民币)。

好消息,小哥已将它直接开源(GitHub1k标星),你也可以试试。

图片

AI模型训练师操作指南

如上图所示,此工具名叫gpt-llm-trainer

如果你也想用它来自动微调某个大模型,首先需要准备:

1、Google Colab或者本地Jupyter notebook;
2、如果选前者,请切换到可用的最佳GPU(执行“Runtime -> change runtime type”);
3、以及一个OpenAI API key(主要还是用的GPT-4能力)。

然后就可以进入具体操作了:

1、先写你的提示词,也就是你希望这个微调后的模型需要具备什么功能。

可以肯定的是,描述得越清晰越好。

比如开头的羊驼例子,作者就给了这么一大段(红字部分):

图片

官方也给了一个简单的示例:

A model that takes in a puzzle-like reasoning-heavy question in English, and responds with a well-reasoned, step-by-step thought out response in Spanish.

2、设定两个值:

(1)temperature,生成数据集的“温度”(取值0-1),值越高代表创意性越强,越低代表越精确;
(2)number_of_examples,要生成的示例数量,推荐从100开始。

3、无脑“下一步”,运行所有cell,完成“生成数据集”、“自动分为训练集和验证集”、“安装各种必备库”、“定义超参数”、“加载数据集并训练”这一系列自动步骤。

之后,你就能得到一个微调好的新模型了。

需要注意的是,这个过程可能在10分钟到几个小时不等,取决于你设置的示例生成数量。

4、最后执行“Run Inference”测试效果,完毕。

相当简单有没有。

值得一提的是,作者已经盘点出了一些待改进的地方,比如:

  • 改进示例生成pipeline,让生成效率更高,成本更低;
  • 添加示例修剪功能,删除相似的样本从而提高性能;
  • 根据示例和数据集的详细信息(比如示例数量),利用GPT-4自动选择超参数,甚至是要微调的模型;
  • 训练多个变体,推出评估损失(eval loss)最少的那个;
    ……

大家也可以浅浅期待一波。

如此神器,出自谁手?

我们简单挖了一下,发现作者的来头还不小。

他叫Matt Shumer,推特粉丝1.7万。

图片

Matt自己开了家公司,产品名叫HyperWriteAI。

这是一个厉害的浏览器操作agent,可以像人一样操作谷歌浏览器来完成一系列任务,比如订披萨。

图片

和gpt-llm-trainer一样,你只需要用文字描述目标,它就会一边列步骤,一边执行。

号称“比AutoGPT强”——

图片

目前,HyperWriteAI已经可以在谷歌扩展程序中安装了,显示用户已达10w+。

图片

最后,我们翻看这位大佬的推特,发现他当天最新的一条推文是:

几周之后,大语言模型的前景就可能要变天了。

图片

可能又在酝酿什么大动作?(手动狗头)

更新:大佬又发了一个类似的自动工具,名叫gpt-oracle-trainer。

只需上传一个产品文档,就能自动训练出一个可以回答有关该产品问题的聊天机器人。

图片

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值