[论文解读]miniGPT-Med:作为放射学诊断通用界面的多模态大模型

摘要

近期人工智能(AI)的进展在医疗保健领域取得了重大突破,尤其是在改进诊断程序方面。然而,以往的研究通常受限于有限的功能。本研究介绍了MiniGPT-Med,这是一种从大规模语言模型衍生出来的针对医学应用设计的视觉语言模型。MiniGPT-Med在多种成像方式上表现出显著的多功能性,包括X光、CT扫描和MRI,增强了其实用性。该模型能够执行诸如生成医学报告、视觉问答(VQA)以及医学影像中的疾病识别等任务。其综合处理图像和临床文本数据显著提高了诊断准确性。我们的实证评估证实了MiniGPT-Med在疾病定位、医学报告生成和VQA基准测试中的卓越表现,标志着在缩小辅助放射学实践差距方面迈出了重要一步。此外,在医学报告生成方面,其达到了最先进的性能,准确率比之前的最佳模型高出19%。MiniGPT-Med有望成为放射科诊断的通用界面,提升各类医学影像应用的诊断效率。

模型和代码已公开发布于_https://github.com/Vision-CAIR/MiniGPT-Med_。

核心速览

研究背景

  1. 研究问题:这篇文章要解决的问题是如何利用大型语言模型(LLMs)在放射学诊断中的应用,具体来说,是开发一个能够处理多种医学影像(如X光、CT扫描和MRI)的视觉语言模型。

  2. 研究难点:该问题的研究难点包括:医学数据的复杂性和敏感性、模型的泛化能力、以及在疾病检测等任务中需要具备的空间定位技能。

  3. 相关工作:该问题的研究相关工作包括LLaVA、Flamingo、MiniGPT-v2等模型在视觉语言理解和生成中的应用,以及Med-Flamingo、MedBERT、Med-VQA等模型在医疗图像分析和诊断报告生成中的应用。

研究方法

这篇论文提出了MiniGPT-Med,用于解决放射学诊断中的多模态数据处理问题。具体来说,

  1. 模型架构:MiniGPT-Med的架构包括三个关键组件:视觉编码器、线性投影层和大语言模型。视觉编码器使用EVA模型处理高分辨率的医学影像,线性投影层将视觉令牌映射到大语言模型的特征空间,大语言模型采用LLaMA2-chat模型。

  2. 视觉语言对齐:为了提高处理高分辨率医学影像的效率,采用了MiniGPT-v2的架构,将四个相邻的视觉令牌合并为一个嵌入,并通过线性投影层映射到大语言模型的特征空间。

  3. 提示模板:为了使模型能够处理多种医学视觉语言任务,使用了包含任务标识符的提示模板。例如,对于疾病检测任务,提示模板为:

其中,任务标识符包括Caption、VQA、Detection、Refer、Grounding和Identify等。

实验设计

  1. 数据集设置:实验使用了多个医学影像数据集,包括MIMIC、NLST、SLAKE和RSNA等。具体来说,MIMIC数据集包含377,110张影像和227,835份医疗报告,NLST数据集包含7,625张低剂量CT扫描影像,SLAKE数据集包含579张放射学影像和3,543组问答对,RSNA数据集包含1,218名患者的肺炎检测结果。

  2. 训练细节:模型初始化为MiniGPT-v2预训练权重,并在整个训练过程中保持视觉编码器冻结。线性投影层和大语言模型进行微调,使用LoRA进行低秩适应。训练数据包含124,276张医学影像,分辨率为448x448像素,训练持续约22小时。

  3. 基线模型:在医学报告生成、疾病检测和医学视觉问答任务中,分别与专门的模型(如Med-Flamingo、LLaVA-Med、RadFM、XrayGPT、CheXagent)和通用模型(如MiniGPT-v2、Qwen-VL)进行比较。

结果与分析

  1. 医学报告生成:在MIMIC数据集上,MiniGPT-Med在BERT-Sim和CheXbert-Sim指标上分别超过了最先进的基线模型CheXagent,分别提高了21.6和5.2个百分点。

  2. 疾病检测:在RSNA数据集上,MiniGPT-Med的IoU得分为0.26,超过了通用模型MiniGPT-v2和Qwen-VL,显示出良好的疾病检测性能。

  3. 医学视觉问答:在RadVQA数据集上,MiniGPT-Med的BERT-Sim得分为0.58,超过了通用模型MiniGPT-v2和专门的模型Med-Flamingo,显示出优越的性能。

总体结论

这篇论文介绍了MiniGPT-Med,一个专为放射学诊断设计的多功能多模态模型。MiniGPT-Med在医学报告生成、疾病检测和医学视觉问答任务中表现出色,显著提高了诊断效率和准确性。未来的工作包括收集更丰富的医学数据集、改进复杂医学术语的理解、增强模型的可解释性和可靠性,以及在实际医疗环境中进行广泛的临床验证。

论文评价

优点与创新

  1. 多模态模型:MiniGPT-Med是一个基于大规模语言模型的多模态模型,专门用于医学应用,展示了在X光、CT扫描和MRI等多种影像模态上的显著多功能性。

  2. 任务多样性:该模型能够执行医疗报告生成、视觉问答和疾病识别等任务,显著提高了诊断准确性。

  3. 基准测试表现优异:在疾病定位、医疗报告生成和VQA基准测试中表现出色,特别是在医疗报告生成方面,比之前的最佳模型高出19%的准确性。

  4. 统一的处理框架:通过结合视觉令牌和大语言模型,MiniGPT-Med能够有效地处理各种医学视觉语言任务。

  5. 公开可用:模型和代码已公开发布,便于其他研究者和开发者使用和扩展。

  6. 专家评估:放射科医生的评估显示,约76%的生成报告质量高,进一步证明了模型的优越性和可靠性。

不足与反思

  1. 数据集限制:由于缺乏多样化和高质量的训练数据,模型的覆盖范围有限,主要集中在少数疾病上。未来需要更丰富和多样化的数据集。

  2. 生成报告的准确性:模型偶尔会生成不准确的医学报告,错误地将症状与疾病联系起来,这种现象被称为“幻觉”。

  3. 设备植入物的混淆:模型难以区分异常和包含人体内设备植入物的医学图像,可能会误将设备植入物识别为异常。

  4. 未来的改进方向:包括纳入更多样化的医学数据集、改进复杂医学术语的理解、增强可解释性和可靠性,以及进行广泛的临床验证研究,以确保在实际医疗环境中的有效性和安全性。

关键问题及回答

问题1:MiniGPT-Med在医学报告生成任务中是如何超越基线模型的?

MiniGPT-Med在医学报告生成任务中通过显著的提高其在BERT-Sim和CheXbert-Sim指标上的得分来超越基线模型。具体来说,MiniGPT-Med在BERT-Sim指标上达到了72.0%,比最先进的基线模型CheXagent高出21.6个百分点;在CheXbert-Sim指标上达到了30.1%,比CheXagent高出5.2个百分点。这表明MiniGPT-Med在生成详细且准确的医学报告方面具有显著优势。

问题2:MiniGPT-Med在疾病检测任务中的表现如何,与其他模型相比有何优势?

在RSNA数据集上进行的疾病检测任务中,MiniGPT-Med的IoU得分为0.26,超过了通用模型MiniGPT-v2(IoU得分为0.13)和Qwen-VL(IoU得分为0.10)。尽管其IoU得分低于一些专门的模型如BioVil(IoU得分为0.30)和MedKLIP(IoU得分为0.31),但MiniGPT-Med在所有基线模型中表现最佳,显示出其在疾病检测任务中的竞争力和潜力。

问题3:MiniGPT-Med在医学视觉问答任务中的表现如何,与其他模型相比有何优势?

在RadVQA数据集上进行的医学视觉问答任务中,MiniGPT-Med的BERT-Sim得分为0.58,超过了通用模型MiniGPT-v2(BERT-Sim得分为0.55)和专门的模型如OpenFlamingo(BERT-Sim得分为0.49)和Med-Flamingo(BERT-Sim得分为0.48)。此外,MiniGPT-Med的表现甚至接近了领先的专门模型MedVIN(BERT-Sim得分为0.62),显示出其在医学视觉问答任务中的优越性能。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值