无监督异常检测算法的比较

该文对19种无监督异常检测算法在10个不同数据集上的性能进行了评估,探讨了算法的优缺点,适用场景以及对异常检测性能、计算量和参数设置的影响。异常检测广泛应用在入侵检测、欺诈检测、数据泄漏预防和医学等领域。
摘要由CSDN通过智能技术生成

无监督异常检测算法的比较

原论文:A comparative evaluation of unsupervised anomaly detection
algorithms for multivariate data

摘要

异常检测是指在数据集中发现与标准不同的意外项目或事件的过程。与标准分类任务相比,异常检测通常应用于未标记数据,只考虑数据集的内部结构。这种挑战被称为无监督异常检测,并在许多实际应用中得到解决,例如在网络入侵检测、欺诈检测以及生命科学和医学领域。在这一领域已经提出了几十种算法,但遗憾的是,研究界仍然缺乏一个比较通用的评估以及公共可用的数据集。在本研究中,我们针对这些不足之处,针对来自多个应用领域的10个不同资料集,评估了19种不同的无监督异常侦测演算法。通过发布源代码和数据集,本文旨在为无监督异常检测研究提供新的研究基础。此外,这一评估首次揭示了不同方法的优缺点。除了异常检测性能、计算量、参数设置的影响以及全局/局部异常检测行为外,还对异常检测性能进行了概述。最后,对典型的现实任务给出了算法选择的建议

引言

在机器学习中,检测数据集中的“非正常”实例一直是人们非常感兴趣的。这个过程通常被称为异常检测。Grubbs在1969年给出了第一个定义[1]:“一个离群的观测值,或者说离群值,是一个看起来与它发生的样本中的其他成员明显不同的观测值。”。虽然这个定义在今天仍然有效,但是检测这些异常值的动机现在已经大不相同了。当时,检测的主要原因是从训练数据中去除异常值,因为模式识别算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值