基于Simulink的电动汽车智能驾驶辅助系统场景适应性与鲁棒性仿真
1. 背景介绍
1.1 项目背景
随着自动驾驶技术的快速发展,智能驾驶辅助系统(ADAS, Advanced Driver Assistance Systems)在电动汽车中的应用越来越广泛。这些系统通过感知环境、规划路径和控制车辆来提高驾驶安全性、舒适性和效率。然而,智能驾驶辅助系统的性能受多种因素影响,包括复杂的交通场景、多变的道路条件以及不确定的外部干扰。
为了验证智能驾驶辅助系统的场景适应性(对不同驾驶环境的适应能力)和鲁棒性(在不确定性下的稳定性),基于MATLAB/Simulink的仿真平台可以提供一种高效、灵活的解决方案。通过构建虚拟测试环境并模拟各种工况,可以评估系统的性能并优化其设计。
2. 智能驾驶辅助系统概述
2.1 系统组成
智能驾驶辅助系统通常包括以下几个模块:
- 感知模块:利用传感器(如摄像头、雷达、激光雷达)获取周围环境信息。
- 决策模块:根据感知结果规划路径和行为策