Pytorch中BCELoss,BCEWithLogitsLoss和CrossEntropyLoss的区别

BCEWithLogitsLoss = Sigmoid+BCELoss,当网络最后一层使用nn.Sigmoid时,就用BCELoss,当网络最后一层不使用nn.Sigmoid时,就用BCEWithLogitsLoss。
(BCELoss)BCEWithLogitsLoss用于单标签二分类或者多标签二分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,对于每一个batch的C个值,对每个值求sigmoid到0-1之间,所以每个batch的C个值之间是没有关系的,相互独立的,所以之和不一定为1。每个C值代表属于一类标签的概率。如果是单标签二分类,那输出和目标的维度是(batch,1)即可。
CrossEntropyLoss用于多类别分类,输出和目标的维度是(batch,C),batch是样本数量,C是类别数量,每一个C之间是互斥的,相互关联的,对于每一个batch的C个值,一起求每个C的softmax,所以每个batch的所有C个值之和是1,哪个值大,代表其属于哪一类。如果用于二分类,那输出和目标的维度是(batch,2)。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值