pandas读取CSV文件时出现警告:Columns (2,3) have mixed types. Specify dtype option on import or set low_memory

在使用pandas读取CSV文件时遇到DtypeWarning,提示2,3列有混合数据类型。该警告源于pandas的分块读取机制和数据类型的自动推断。解决方法包括设置`low_memory=False`或者对问题列指定数据类型。第一种方法可能导致大文件内存溢出,推荐使用第二种方法,通过dtype参数预设列的数据类型。" 118434945,7604996,自定义监控Zabbix 5: Redis、Nginx、MySQL实战,"['zabbix', 'linux', 'centos', '监控']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题

用pandas读csv时,通过某些条件进行清洗数据,但是总感觉清洗出来的数据不对,就又用Python自带的csv模块进行了一次清洗,结果发现两种方式清洗出来的数据结果不一致,并且在pandas读入数据时,出现如下数据类型warning

D:\myCode\PythonTest\MachineLearning\venv\Scripts\python.exe D:/myCode/spark/spark_ML/data2New.py
sys:1: DtypeWarning: Columns (2,3) have mixed types. Specify dtype option on import or set low_memory=False.

意思是2,3列的数据类型不一致。为什么会出现这种情况呢?

pandas读取csv文件默认是按块读取的,即不一次性全部读取;
另外pandas对数据的类型是完全靠猜的,所以pandas每读取一块数据就对csv字段的数据类型进行猜一次,所以有可能pandas在读取不同块时对同一字段的数据类型猜测结果不一致。

二、解决方法

方法一:

           按照提示,读入数据时指定参数low_memory=False,可以部分解决这类问题。

原来代码:

df0 = pd.read_csv('D:/myCode/spark/spark_ML/2019data.csv')

添加指定参数后:

df0 = pd.read_csv('
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡同1991

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值