Spring AI Alibaba MCP 市场正式上线!

Spring AI Alibaba 正式上线 MCP 市场:Spring AI Alibaba-阿里云Spring AI Alibaba官网官网

开发者可以在这里搜索市面上可用的 MCP Server 服务,了解每个服务的实现与接入方法。

MCP 市场是做什么的?

Spring AI Alibaba MCP 当前主要提供 MCP Server 的查看与浏览能力,帮您省去了到处搜集 MCP 实现的负担,后续可通过接入 Higress 等 AI 网关体验在线接入。。

由于 MCP 正处于快速发展阶段,我们将尽量保持 MCP 市场展示最新的数据。欢迎社区贡献者一起参与贡献,我们共同维护 MCP 市场更新,欢迎在这里 修改源码 并提交 PR。

什么是 MCP?

模型上下文协议(MCP)是一种开放协议,旨在实现 LLM 应用程序与外部数据源和工具之间的无缝集成。它作为一种标准化的方式,将 LLM 与其所需的上下文联系起来。

MCP 解决什么问题?

MCP 解决了人工智能系统和数据源之间零散集成的问题。它解决了人工智能模型与数据隔离并被困在信息孤岛后面的挑战,用一个通用协议取代了多个自定义实现。

MCP 的有哪些应用案例?

MCP 可用于各种场景,包括:构建 Claude、Clinet 等智能体 IDE、增强聊天界面、创建自定义 AI 工作流、将 AI 应用与外部数据源连接等。

如何使用 Java 开发应用并发布为 MCP Server?

Spring AI Alibaba 支持将 Java 应用发布为标准的 MCP Server,开发者之需要按照约定的步骤配置应用即可发布自己的 MCP 服务。可查看官方发布的 博客

如何在 Java 智能体中调用 MCP 服务?

使用 Spring AI Alibaba 开发的智能体应用可以接入 MCP 市场上所有 MCP Server 实现,具体使用方式可查看官方发布的 博客

如何将已有的 Java 应用转换成 MCP 服务?

站在大模型视角,应用发布的服务要通过 MCP 接入智能体,必须满足以下要求:

  • 服务包含明确的语义描述、方法入参格式与语义描述、方法返回值格式描述
  • 服务支持并能识别 MCP 协议请求

基于以上两点,存量的大部分 Java 应用应该都是不支持的。因此,我们需要做一些额外的工作来完成 MCP 接入:

  1. 使用 Spring AI Alibaba 对应用进行改造,直接将应用发布为 MCP Server。这需要对应用进行代码改造,如升级 JDK17、增加注解、重新发布应用等。
  2. 使用 Nacos + Higress 网关代理,通过配置化的形式在 Nacos 中增加服务描述等元数据,同时使用 Higress 实现协议代理转换。该方案的优势是可以实现零代码修改 MCP 升级,具体可参考 Nacos 社区发布的博客

稍后,我们将会在 Spring AI Alibaba 社区发布通过集成 Higress、Nacos 提供的 MCP 集成方案,敬请期待!

内容概要:本文深入探讨了AMESim仿真平台在电动汽车(EV)热泵空调系统设计与优化中的应用。首先介绍了AMESim的基础建模方法,如构建制冷循环模型中的压缩机、蒸发器和冷凝器等组件,并详细解释了各部件的工作原理及其参数设定。接着重点阐述了EV热泵空调系统的特殊之处,即不仅能够制冷还可以在冬季提供高效的制热功能,这对于提高电动汽车在寒冷条件下的续航里程和乘坐舒适性非常重要。文中给出了几个具体的案例,包括通过改变压缩机运行频率来进行性能优化,以及针对低温环境下热泵系统的控制策略,如四通阀切换逻辑、电子膨胀阀开度调节等。此外,还讨论了热泵系统与其他子系统(如电池温控)之间的协同工作方式,强调了系统集成的重要性。最后分享了一些实用的经验技巧,例如如何避免仿真过程中可能出现的问题,怎样评估系统的整体性能等。 适合人群:从事汽车工程、暖通空调(HVAC)领域的研究人员和技术人员,特别是关注新能源汽车热管理系统的专业人士。 使用场景及目标:适用于希望深入了解电动汽车热泵空调系统特性的工程师们,旨在帮助他们掌握基于AMESim进行系统建模、仿真分析的方法论,以便更好地指导实际产品研发。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者具备一定的机械工程背景知识,同时配合官方文档或其他参考资料一起研读,以加深理解。
### Spring AI MCP Java SDK 概述 Spring AI MCP 是一种基于 Model Context Protocol (MCP) 的 Java 实现,旨在简化模型上下文协议的应用开发过程。通过该 SDK,开发者可以轻松构建支持 MCP 协议的服务端和客户端应用程序[^1]。 #### 核心功能 - **多传输选项**:支持多种通信方式,便于灵活集成到不同的技术栈中。 - **三层架构设计**: - **MCP 客户端**:负责向服务端发送请求并处理响应。 - **MCP 服务器**:提供 API 接口供客户端调用,并管理模型的上下文数据。 - **工具回调接口(ToolCallbackProvider)**:允许扩展自定义行为以适应特定需求[^2]。 --- ### 使用方法 以下是关于如何使用 Spring AI MCP Java SDK 构建服务端和客户端的具体指导: #### 1. 引入 Maven 依赖 在项目的 `pom.xml` 文件中添加以下依赖项来引入 Spring AI MCP SDK: ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-mcp</artifactId> <version>1.0.0-M6</version> </dependency> ``` #### 2. 配置 YML 文件 创建或修改项目中的 `application.yml` 或 `application.properties` 文件,设置必要的参数。例如: ```yaml spring: ai: mcp: server-url: http://localhost:8080/mcp-server client-id: my-client-id secret-key: my-secret-key ``` #### 3. 编写服务端代码 服务端需要实现 ToolCallbackProvider 并将其注册到容器中。示例代码如下: ```java import org.springframework.ai.mcp.ToolCallbackProvider; import org.springframework.stereotype.Component; @Component public class MyToolCallbackProvider implements ToolCallbackProvider { @Override public String handleRequest(String requestPayload) { // 自定义逻辑处理接收到的数据 return "Response from tool callback provider"; } } ``` 同时,在控制器类中暴露 RESTful API 来接收来自客户端的请求: ```java import org.springframework.web.bind.annotation.*; @RestController @RequestMapping("/mcp-server") public class McpServerController { private final ToolCallbackProvider toolCallbackProvider; public McpServerController(ToolCallbackProvider toolCallbackProvider) { this.toolCallbackProvider = toolCallbackProvider; } @PostMapping("/process") public String process(@RequestBody String payload) { return toolCallbackProvider.handleRequest(payload); } } ``` #### 4. 编写客户端代码 客户端可以通过简单的 HTTP 请求与服务端交互。下面展示了一个基本的 Controller 示例: ```java import org.springframework.beans.factory.annotation.Value; import org.springframework.http.ResponseEntity; import org.springframework.web.bind.annotation.*; import org.springframework.web.client.RestTemplate; @RestController @RequestMapping("/mcp-client") public class McpClientController { private final RestTemplate restTemplate; @Value("${spring.ai.mcp.server-url}") private String serverUrl; public McpClientController(RestTemplate restTemplate) { this.restTemplate = restTemplate; } @GetMapping("/send-request") public ResponseEntity<String> sendRequest() { String url = serverUrl + "/process"; String requestBody = "{\"key\":\"value\"}"; return restTemplate.postForEntity(url, requestBody, String.class); } } ``` --- ### 总结 Spring AI MCP 提供了一套完整的解决方案,帮助开发者快速搭建基于 MCP 协议的应用程序。无论是作为服务提供商还是消费者角色,都可以借助其强大的功能模块完成复杂的业务场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值