AnimateDiff:图生图制作GIF动画

今天我来分享一下通过图生图的方式制作GIF动画。

我们先看一下图生图制作GIF动画的效果。

原图片

生成的GIF动画

原图片

生成的GIF动画

原图片

生成的GIF动画

下面我们详细讲解一下使用AnimateDiff插件如何通过图生图制作GIF动画。

【第一步】:图生图图片上传以及相关参数设置

在图生图功能菜单界面,我们选择【图生图】上传一张照片。

下面是相关参数设置

  • 采样器:DPM++2M Karras

  • 采样迭代步数:30

  • 图片宽高:保持和上传的图片宽高一致。

  • 重绘强度 :这个参数非常重要,要求值不能设置得太小,设置得太小,实现不了我们的动画效果。设置得越大,动画效果就更明显,一般要求设置到0.75-1之间,我这里设置为0.8。

  • 图像生成种子(Seed) :为了保持和原图片的效果,这里建议图像生成种子设置为原图片的种子。因为GIF动画是由原图像生成的一帧一帧的图片组成的,我们重绘强度设置的比较大,原图片生成的每一帧图片变化的就比较大,我们可以通过图像的生成种子固定图片的信息。

相关说明:重绘强度和图像生成种子2个参数非常重要,涉及到最终生成GIF动画的效果。

【第二步】AnimateDiff插件的参数设置

总帧数设置为24帧(3秒)

【第三步】提示词的编写

这里提示词写图片质量相关提示词,以及让美女产生动作的提示词即可。

正向提示词:masterpiece,best quality, 1 girl, walking on the street,

【第四步】大模型的选择以及图片的生成

关于大模型的选择,建议与生成原图片的大模型保持一致即可。

这里我们使用dreamshaper_7模型(原图片使用的大模型)。

当然,有些图片并不是使用SD工具生成的,这里可以先使用SD工具处理一下即可。

相关说明:

(1)如果重绘强度设置的比较小,生成的GIF动画图片中经常有图片碎片化效果。下面动画是将重绘强度设置为0.5的时候生成的GIF动画图片。

(2)尝试更换一下大模型majicMIX realistic v7,生成的GIF动画图片效果也还是不错的。

(3)我们将图像生成种子(Seed)设置为-1,生成的GIF动画图片和原图片风格变化有些大了。

好了,今天的分享就到这里了,希望今天分享的内容对大家有所帮助。

文章使用的AI绘画SD整合包、各种模型插件、提示词、AI人工智能学习资料都已经打包好放在网盘中了,无需自行查找,有需要的小伙伴文末扫码自行获取。

最后

如果你是真正有耐心想花功夫学一门技术去改变现状,我可以把这套AI教程无偿分享给你,包含了AIGC资料包括AIGC入门学习思维导图AIGC工具安装包精品AIGC学习书籍手册AI绘画视频教程AIGC实战学习等。

这份完整版的AIGC资料我已经打包好,长按下方二维码,即可免费领取!

在这里插入图片描述

【AIGC所有方向的学习路线思维导图】

img

【AIGC工具库】

img

【精品AIGC学习书籍手册】

img

【AI绘画视频合集】

img
这份完整版的AIGC资料我已经打包好,长按下方二维码,即可免费领取!
在这里插入图片描述

### 如何使用 AnimateDiff 进行成 #### 安装依赖库 为了能够顺利运行 AnimateDiff,需要先安装必要的 Python 库以及配置好环境。可以从 GitHub 或者 GitCode 获取源码并按照官方文档说明来设置开发环境。 对于从GitHub获取资源的情况可以访问此链接[^1];而针对国内用户可能更方便通过GitCode下载代码仓库[^2]。 #### 准备工作 确保已经成功克隆了 `sd-webui-animatediff` 项目,并且依照README文件中的指导完成了所有前置条件的搭建,比如Python版本、pip工具以及其他所需的软件包等。 #### 配置参数 在执行具体的成功能之前,应当熟悉脚本内的各项可调节选项。这些设定通常位于命令行接口CLI或是配置文件config.yaml里定义。例如: - 输入提示词(Prompt) - 输出路径(Output Path) - 动画帧数(Frame Count) 具体细节可以根据实际需求调整,更多高级功能和自定义项也值得探索。 #### 执行成过程 当一切准备就绪之后,就可以调用相应的API函数或者直接利用提供的shell/bash脚本来启动像创建流程了。下面给出了一段简单的Python示例代码用于展示基本操作方法: ```python from animatediff import generate_image_sequence generate_image_sequence( prompt="A beautiful sunset over mountains", output_dir="./output_images/", frame_count=60, model_path='./models/model.pth' ) ``` 这段代码将会基于给定的文字描述(`prompt`),运用预训练模型(`model_path`)渲染一系列连续变化的画面序列(`frame_count`)保存至指定目录下(`output_dir`)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值