2025最新版Stable Diffusion一键部署指南:零基础玩转AI绘画(10分钟速成)

最近几年人工智能爆火,除了AI对话,目前AI作图也很火,比起收费的Midjourney,还有一个超级好用的开源****免费AI作图项目:Stable Diffusion(简称SD),通过训练模型让它学会生成图片。

B站UP主@秋葉aaaki 大佬基于SD制作了novelai-webui,内置了运行所需要的环境还有各种插件,即开即用,大大方便 新手使用。

为了防止部分小伙伴看到之后嫌弃麻烦,先来看几个效果,这都是在课代表笔记本电脑里面生成的👇

图片

图片

01

配置要求

由于图片是在本地生成的,对电脑配置要求较高,所以要先检查电脑配置:

打开任务管理器的性能选项,这个工具适用于英伟达的显卡(AMD不行),显存至少要4GB以上****,电脑内存16GB或以上。

图片

图片

如果不满足配置要求,会无法使用或者很慢!

02

使用介绍

①解压课代表提供的压缩包,共有10GB大小,文件夹所在路径不要有中文名,第一次运行时以管理员身份运行。

图片

②打开以后,点击一键启动即可,会弹出这些窗口,还有自动使用记事本打开的一个文本文件,粘贴那句话再保存文件就算是同意许可协议了。

图片

图片

图片

③然后软件会调用浏览器打开网页,就可以使用了,输入提示词(Prompt)和反向提示词(Negative prompt),再选择迭代步数(50以上)、图片尺寸(也可以大一点)和采样方法,就可以生成了!

举例:

  • 提示词:best quality, masterpiece, highres, 1girl,china dress,Beautiful face
  • 反向提示词:NSFW, lowres,bad anatomy,bad hands, text, error, missing fingers,extra digit, fewer digits, cropped, worstquality, low quality, normal quality,jpegartifacts,signature, watermark, username,blurry,bad feet
  • Sampling steps: 50
  • Sampler: DPM++ SDE Karras or DDIM

图片

④默认的模型是动漫风格的,可以下载不同的模型生成不同类型的图片。

图片

⑤下载模型有两种方法,一个是从软件模块管理里面,刷新列表,然后找到要下载的模型点击下载,如果下载不动,就复制链接到浏览器下载。

图片

⑥又或者在一些网站下载模型文件,比如:https://civitai.com/(需要特殊的网络手段,直接是打不开的),获取到的下载链接不需要特殊网络就可以直接下载。

图片

图片

图片

⑦下载好的模型文件,通过软件的添加模型导入即可。

图片

⑧然后重启应用,在左上角选择模型就可以应用了。

图片
这里直接将该软件分享出来给大家吧~
这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

### VLM VLA 中的机械技术参数 在涉及视觉-语言模型(VLM)视觉-语言-动作模型(VLA)的应用中,机械的技术参数设计至关重要。这类系统通常依赖于高精度传感器、强大的计算资源以及高效的控制系统。 #### 高级操控策略 一个基于扩散的高级操控策略被应用于机械操作中[^4]。此策略接收来自腕部安装摄像头的实时视频流作为输入数据源,并据此生成一系列末端执行器的姿态目标。这些姿态目标是在摄像机坐标系内定义的,从而使得机械能够精确地模仿人类手眼协调完成复杂任务的能力。 #### 动作预测模块 为了使VLM具备产生实际物理世界中的运动指令能力,在其架构之后连接了一个特别定制的动作预测组件(action expert)[^2]。这一部件利用注意力机制基础VLM各层之间建立联系,动态调整自身权重以适应不同情境下的需求变化。最终输出的是连续形式的动作序列而非离散化的令牌表示法,这有助于提高响应速度并减少延迟时间。 ### 应用场景 当涉及到具体应用场景时,VLA更侧重于结合视觉语言信息来进行特定的任务执行,尤其是在机器人控制领域有着广泛用途: - **工业自动化**: 自动装配线上的零件抓取放置; 物料搬运; - **医疗辅助**: 手术室内的器械传递;康复治疗过程中的协助; - **家庭服务型机器人**: 日常生活物品整理收纳;清洁维护工作等. ### 控制系统结构 整个系统的运作离不开一套完善的控制系统支持: 1. **感知单元** - 使用RGB-D相机或其他类型的成像设备获取环境图像。 2. **处理核心** - 基于GPU加速平台运行深度神经网络算法实现对物体识别分类定位等功能。 3. **决策制定者** - 结合自然语言理解规划逻辑确定下一步行动计划。 4. **执行机构** - 由多个自由度组成的多关节机械负责实施预定的操作命令。 ```python import numpy as np def control_system(input_image, command_text): perception_output = process_perception(input_image) decision = make_decision(perception_output, command_text) action_sequence = generate_action(decision) execute_actions(action_sequence) control_system(np.random.rand(240, 320), "Pick up the red block.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值