悼念512汶川大地震遇难同胞——珍惜现在,感恩生活
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 10785 Accepted Submission(s): 4565
Problem Description
急!灾区的食物依然短缺!
为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买。
请问:你用有限的资金最多能采购多少公斤粮食呢?
后记:
人生是一个充满了变数的生命过程,天灾、人祸、病痛是我们生命历程中不可预知的威胁。
月有阴晴圆缺,人有旦夕祸福,未来对于我们而言是一个未知数。那么,我们要做的就应该是珍惜现在,感恩生活——
感谢父母,他们给予我们生命,抚养我们成人;
感谢老师,他们授给我们知识,教我们做人
感谢朋友,他们让我们感受到世界的温暖;
感谢对手,他们令我们不断进取、努力。
同样,我们也要感谢痛苦与艰辛带给我们的财富~
为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买。
请问:你用有限的资金最多能采购多少公斤粮食呢?
后记:
人生是一个充满了变数的生命过程,天灾、人祸、病痛是我们生命历程中不可预知的威胁。
月有阴晴圆缺,人有旦夕祸福,未来对于我们而言是一个未知数。那么,我们要做的就应该是珍惜现在,感恩生活——
感谢父母,他们给予我们生命,抚养我们成人;
感谢老师,他们授给我们知识,教我们做人
感谢朋友,他们让我们感受到世界的温暖;
感谢对手,他们令我们不断进取、努力。
同样,我们也要感谢痛苦与艰辛带给我们的财富~
Input
输入数据首先包含一个正整数C,表示有C组测试用例,每组测试用例的第一行是两个整数n和m(1<=n<=100, 1<=m<=100),分别表示经费的金额和大米的种类,然后是m行数据,每行包含3个数p,h和c(1<=p<=20,1<=h<=200,1<=c<=20),分别表示每袋的价格、每袋的重量以及对应种类大米的袋数。
Output
对于每组测试数据,请输出能够购买大米的最多重量,你可以假设经费买不光所有的大米,并且经费你可以不用完。每个实例的输出占一行。
Sample Input
1 8 2 2 100 4 4 100 2
Sample Output
400
Author
lcy
Source
Recommend
lcy
code1:
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int cas;
cin>>cas;
int cost[1000];
int weight[1000];
int amount[1000];
int dp[1000];
int n,m;
while(cas--)
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>cost[i]>>weight[i]>>amount[i];
}
int sum=-1;
memset(dp,0,sizeof(dp));
for(int i=1;i<=m;i++)
{
for(int j=1;j<=amount[i];j++)//将其按照给定数量转换成0-1背包
{
for(int k=n;k>=cost[i];k--)
{
dp[k]=max(dp[k],dp[k-cost[i]]+weight[i]);
// cout<<1<<endl;
if(dp[k]>sum)
sum=dp[k];
}
}
}
cout<<sum<<endl;
}
return 0;
}
code2:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int main()
{
int cas;
int count;
int val[10000];
int wei[10000];
int dp[100000];
int n,m;
int p,h,c;//价格 每袋的重量 大米的袋数
cin>>cas;
while(cas--)
{
cin>>n>>m;
count=0;
memset(dp,0,sizeof(dp));
memset(wei,0,sizeof(wei));
memset(val,0,sizeof(val));
for(int i=0;i<m;i++)
{
cin>>p>>h>>c;
for(int j=0;j<c;j++)
{
val[count]=p;
wei[count++]=h;
}
}
for(int i=0;i<count;i++)
{
for(int j=n;j>=val[i];j--)
{
dp[j]=max(dp[j],dp[j-val[i]]+wei[i]);
}
}
cout<<dp[n]<<endl;
}
return 0;
}
/*
这是这第三次做这道题 没有用二进制优化
其实直接转换成01 背包 简单实用~
*/
01 ,完全,多重背包,一维之后差不多了~ 还省时~