畅通工程
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 13725 Accepted Submission(s): 5656
Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
Sample Output
3 ?
最小生成树算法:
Prim算法思路
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<vector>
#define MAX 105
#define INF 0x3f3f3f3f
using namespace std;
int Map[MAX][MAX];
int N, M,sum;
bool Isvisit[MAX];
int Mincost[MAX], cost[MAX][MAX];
void init(){
for (int i = 1; i <= M; i++){
for (int j = 1; j <= M; j++){
Map[i][j] = INF;
}
}
}
int Prime(){
int Min,post; //Min用于记录与当前 点连接的最短距离,而post则是记录最短距离Min的标号
memset(Isvisit, false, sizeof(Isvisit));
for (int i = 1; i <= M; i++){
Mincost[i] = Map[1][i];//以1为起始点
}
Isvisit[1] = true; //标记1已加入生成树集合
Mincost[1] = INF; //改变距离,防止下一次选重
for (int i = 1; i < M; i++){ // i从起始点开始到 M-1结束 (M为点的个数,最小生成树为M-1条边,每个i加入一条边,我是这样理解的)
Min = INF; //Min距离
for (int j = 1; j <= M; j++){ //j遍历所有点
if (!Isvisit[j] && Mincost[j] < Min){
Min = Mincost[j]; //没有加入生成树,并且小于当前Min值,记录该点
post = j;
}
}
if (Min == INF) //如果执行完一遍循环,Min还是等于INF,怎说明无法生成树
return -1;
sum += Min; //sum+=Min (用来记录最小生成树的长度 )
Isvisit[post] = true; //加入post点到树中
for (int j = 1; j <= M; j++){ //更改与post 点有连线的点
if (!Isvisit[j] && Mincost[j]>Map[post][j]){
Mincost[j] = Map[post][j];
}
}
}
return sum;
}
int main(){
while (true){
sum = 0;
cin >> N >> M;
if (N == 0)
break;
init();
for (int i = 1; i <= N; i++){
int f, t, c;
cin >> f >> t >> c;
Map[f][t] = c;
Map[t][f] = c;
}
cout<<Prime()<<endl;
for(int i=0;i<N;i++){
cout<<Mincost[i]<<endl;
}
}
}