Jensen不等式在机器学习领域的应用广泛,下面我们来对它做一下总结。
我们知道,按照凸优化的定义,若f为凸函数有:
此处,。利用归纳法,我们可以很容易将其扩展到多维情况:
这里且。有趣的是,上式中如果k无限大,我们可以将上式转为积分形式:我们设函数p(x) >= 0,且,用p(x)代替,我们有:
那么如果x是随机变量,p(x)是概率密度函数呢,上式就变成了。
参考文献:
Jensen不等式在机器学习领域的应用广泛,下面我们来对它做一下总结。
我们知道,按照凸优化的定义,若f为凸函数有:
此处,。利用归纳法,我们可以很容易将其扩展到多维情况:
这里且。有趣的是,上式中如果k无限大,我们可以将上式转为积分形式:我们设函数p(x) >= 0,且,用p(x)代替,我们有:
那么如果x是随机变量,p(x)是概率密度函数呢,上式就变成了。
参考文献: