Jensen不等式简介

Jensen不等式在机器学习领域的应用广泛,下面我们来对它做一下总结。

我们知道,按照凸优化的定义,若f为凸函数有:

                                               

此处,0 \leq \theta \leq 1。利用归纳法,我们可以很容易将其扩展到多维情况:

                                       

这里\theta_1, \theta_2,...,\theta_k\geq 0\theta_1 + \theta_2 + ... + \theta_k = 1。有趣的是,上式中如果k无限大,我们可以将上式转为积分形式:我们设函数p(x) >= 0,且\int p(x) dx = 1,用p(x)代替\theta,我们有:

                                                        

那么如果x是随机变量,p(x)是概率密度函数呢,上式就变成了

参考文献:

[1] Convex Optimization

                                                  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值