基本形式:tf.nn.embedding_lookup(params, ids)
参数:1. params:待lookup的tensor
2. ids:params使用ids来lookup(ids也应该是tensor)
通俗地讲,embedding_lookup(params, ids)其实就是按照ids顺序返回params中的第ids个元素。举个例子:
matrix = np.random.random([1024, 64]) # 64-dimensional embeddings
ids = np.array([0, 5, 17, 33])
print matrix[ids] # prints a matrix of shape [4, 64]
作者:熊俊杰
链接:https://www.zhihu.com/question/52250059/answer/191093561
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
当然之所以取名叫embedding_lookup,个人认为是和word_embedding有些关系的。一般做nlp需要用到词向量,这些词向量可以是预先训练好的也可以是自己训练得到的;在网络里需要把词汇对应的id转化为词向量,这时候就可以调用该函数完成该功能。是不是很方便?