tf.nn.embedding_lookup简介

基本形式:tf.nn.embedding_lookup(params, ids)

参数:1. params:待lookup的tensor

           2. ids:params使用ids来lookup(ids也应该是tensor)

通俗地讲,embedding_lookup(params, ids)其实就是按照ids顺序返回params中的第ids个元素。举个例子:

matrix = np.random.random([1024, 64])  # 64-dimensional embeddings
ids = np.array([0, 5, 17, 33])
print matrix[ids]  # prints a matrix of shape [4, 64]

作者:熊俊杰
链接:https://www.zhihu.com/question/52250059/answer/191093561
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

当然之所以取名叫embedding_lookup,个人认为是和word_embedding有些关系的。一般做nlp需要用到词向量,这些词向量可以是预先训练好的也可以是自己训练得到的;在网络里需要把词汇对应的id转化为词向量,这时候就可以调用该函数完成该功能。是不是很方便?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值