回归 ----一元线性回归

目录

回归分析

代价函数 (损失函数)

梯度下降法 ---一元线性回归

sklearn ---一元线性回归


回归分析

用来建立方程模拟两个或者多个变量之间如何关联

被预测的变量叫做:因变量,输出

被用来进行预测的变量叫做:自变量,输入

一元线性回归包含一个自变量一个因变量

两个变量的关系用一条直线来模拟

如果包含两个以上的自变量,则称作多元回归分析

hθ(x) = θ0 + θ1x   这条直线称为回归线  θ1为回归线斜率  θ0为回归线截距

代价函数 (损失函数)

方法:最小二乘法

真实值 y  预测值hθ(x) 则误差平法为(y - hθ(x))^2

找到合适的参数,使误差平方和:最小。

梯度下降法 ---一元线性回归

用代码来模拟一元线性回归:

首先先把需要用到的库导入

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

 然后载入data.scv,这是一个描述很多点坐标的一个文件,显示出点的分布

# 载入数据
data = np.genfromtxt("data.csv",delimiter=",")
x_data = data[:,0]
y_data = data[:,1]
plt.scatter(x_data,y_data)
plt.show()

 

接下来实现最小二乘法函数以及梯度下降法的函数,更新回归线的斜率以及截距,使误差更小

#学习率
lr = 0.0001
#截距
b = 0
#斜率
k = 0
#最大迭代次数
epochs = 50

#最小二乘法
def  minimum_squares(x_data,y_data,b,k):
    totalError = 0
    for i in range(0,len(x_data)):
        totalError += (y_data[i] - (k*x_data[i] + b)) ** 2
    return totalError / float(len(data)) / 2.0

def gradient_descent_runner(x_data,y_data,b,k,lr,epochs):
    #计算总数据量
    m = float(len(x_data))
    #循环epochs次
    for i in range (epochs):
        b_grad = 0
        k_grad = 0
        
        #计算梯度的总和再求平均
        for j in range(0,len(x_data)):
            b_grad += (1/m) *(((k*x_data[j]) +b) - y_data[j])
            k_grad += (1/m) *(((k*x_data[j]) +b) - y_data[j]) * x_data[j]
            
        #更新b和k
        b = b - (lr * b_grad)
        k = k - (lr * k_grad)
        #每迭代5次,输出一次图像
        
        if i % 5 == 0:
            print("epochs:",i)
            plt.plot(x_data,y_data,'b.')
            plt.plot(x_data,k*x_data+b,'r')
            plt.show()
            
    return b,k
            
print("Staring b ={0},k = {1}, error = {2}" .format(b,k,minimum_squares(x_data,y_data,b,k)))
print("Running.....")
b,k = gradient_descent_runner(x_data,y_data,b,k,lr,epochs)
print("After {0} iterations b = {1},k={2},error = {3}" .format(epochs,b,k,minimum_squares(x_data,y_data,b,k)))

#画图
plt.plot(x_data,y_data,'b.')
plt.plot(x_data,k*x_data+b, 'r')
plt.show()

代码中使用了迭代50次,每5次输出一次图像 结果如下:

 

 

 

 从上图中我们可以很清楚的看到了,红色线段的误差越来越小。

sklearn ---一元线性回归

其实,我们要实现一元线性回归,我们可以直接调用库来完成,但是由于我们使初学者,对于实现的过程以及思想还是弄清楚最好,对于有些比较麻烦的思想,我们可以直接调用来实现。

实现代码如下:

先导入需要的库

from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

 再载入数据

#载入数据
data = np.genfromtxt("data.csv",delimiter = ',')
x_data = data[:,0]
y_data = data[:,1]
plt.scatter(x_data,y_data) #scatter 画三散点图
plt.show()
print(x_data.shape)  #shape 查看矩阵或者数组的维数

 如图:

x_data = data[:,0,np.newaxis]
y_data = data[:,1,np.newaxis]
model = LinearRegression()
model.fit(x_data,y_data)

 上边代码的处理过程只是因为我们fit函数使用时,它的参数有要求,对于这个问题,我们可以自己搜fit函数的使用方法。

plt.plot(x_data,y_data,'b.')
plt.plot(x_data,model.predict(x_data),'r')
plt.show()

 上边代码就是我们实现一元线性回归调用的函数,结果如图:

这个图最终的结果和我们自己编写出来代码实现的结果是一样的。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值