回归----多项式回归

目录

多项式回归

 多项式代码实现


多项式回归

假如我们不是要找直线(或超平面),而是一个需要找到一个用多项式所表示的曲线(或超曲面)。例如二次曲线:y=at^2 + bt + c

散点分布时,我们也可以清楚看到,有时我们找一条曲线,它的拟合度会更高

 多项式回归可以写成下面的这种形式:

 多项式代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
%matplotlib inline

#载入数据
data = np.genfromtxt("job.csv",delimiter=',')
x_data = data[1:,1]
y_data = data[1:,2]
plt.scatter(x_data,y_data)
plt.show()

x_data = x_data[:,np.newaxis]
y_data = y_data[:,np.newaxis]
#创建并拟合模型
model = LinearRegression()
model.fit(x_data,y_data)

#画图
plt.plot(x_data,y_data,'b.')
plt.plot(x_data,model.predict(x_data),'r')
plt.show()

以上代码是我们很熟悉的代码了,还没用到多项式回归,画出来的图如下 :

下边的代码是多项式回归: 

#定义多项式回归,degree的值可以调节多项式的特征
poly_reg = PolynomialFeatures(degree = 10) 
#特征处理
x_poly = poly_reg.fit_transform(x_data)#degree = 3   x_poly  =  x^0  x^1  x^2  x^3
#定义回归模型
lin_reg = LinearRegression()
#训练模型
lin_reg.fit(x_poly,y_data)

 训练模型结束后,我们可以将图形画出来:

#画图
plt.plot(x_data,y_data,'b.')
x_test = np.linspace(1,10,100)
x_test = x_test[:,np.newaxis]
plt.plot(x_test,lin_reg.predict(poly_reg.fit_transform(x_test)),c='r') #做预测的时候要传入已经处理过的值
plt.title('Truth or Bluff (Polynomial Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()

对比上边的图,我们可以清楚的看到这张图的拟合度更高!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>