Flink on Yarn的两种运行方式

Flink on Yarn(yarn session 和 flink run 两种模式)
session:这种方式需要先向yarn申请一块空间后,再提交作业,资源永远保持不变。如果资源满了,下一个作业就无法提交,只能等到yarn中的其中一个作业执行完成后,释放了资源,那下一个作业才会正常提交,这种方式资源被限制在session中,不能超过。
flink run:一个任务会对应一个job,每提交一个作业会根据自身的情况,向yarn申请资源,直到作业执行完成,并不会影响下一个作业的正常运行。这种方式就需要确保集群资源足够。

 

Flink on Yarn的两种运行方式

第一种【yarn-session.sh(开辟资源)+flink run(提交任务)】

•启动一个一直运行的flink集群

•./bin/yarn-session.sh -n 2 -jm 1024 -tm 1024 [-d]

•附着到一个已存在的flink yarn session

•./bin/yarn-session.sh -id application_1463870264508_0001

•执行任务

•./bin/flink run ./data/batch/WordCount.jar -input hdfs://hadoop00:9000/LICENSE -output hdfs://hadoop00:9000/wordcount-result.txt

•停止任务 【web界面或者命令行执行cancel命令】

第二种【flink run -m yarn-cluster(开辟资源+提交任务)】

•启动集群,执行任务

•./bin/flink run -m yarn-cluster -yn 2 -yjm 1024 -ytm 1024 ./data/batch/WordCount.jar

注意:client端必须要设置YARN_CONF_DIR或者HADOOP_CONF_DIR或者HADOOP_HOME环境变量,通过这个环境变量来读取YARN和HDFS的配置信息,否则启动会失败

./bin/yarn-session.sh 命令分析

用法: 

   必选 

     -n,--container <arg>   分配多少个yarn容器 (=taskmanager的数量) 

   可选 

     -D <arg>                        动态属性 

     -d,--detached                   独立运行 

     -jm,--jobManagerMemory <arg>    JobManager的内存 [in MB] 

     -nm,--name                     在YARN上为一个自定义的应用设置一个名字 

     -q,--query                      显示yarn中可用的资源 (内存, cpu核数) 

     -qu,--queue <arg>               指定YARN队列. 

     -s,--slots <arg>                每个TaskManager使用的slots数量 

     -tm,--taskManagerMemory <arg>   每个TaskManager的内存 [in MB] 

     -z,--zookeeperNamespace <arg>   针对HA模式在zookeeper上创建NameSpace

     -id,--applicationId <yarnAppId>        YARN集群上的任务id,附着到一个后台运行的yarn session中

./bin/flink run 命令分析

run [OPTIONS] <jar-file> <arguments> 

• "run" 操作参数: 

•-c,--class <classname>  如果没有在jar包中指定入口类,则需要在这里通过这个参数指定 

•-m,--jobmanager <host:port>  指定需要连接的jobmanager(主节点)地址,使用这个参数可以指定一个不同于配置文件中的jobmanager 

•-p,--parallelism <parallelism>   指定程序的并行度。可以覆盖配置文件中的默认值。

默认查找当前yarn集群中已有的yarn-session信息中的jobmanager【/tmp/.yarn-properties-root】:

•./bin/flink run ./data/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1

连接指定host和port的jobmanager:

•./bin/flink run -m hadoop00:1234 ./data/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1

启动一个新的yarn-session:

•./bin/flink run -m yarn-cluster -yn 2 ./data/batch/WordCount.jar -input hdfs://hostname:port/hello.txt -output hdfs://hostname:port/result1

•注意:yarn session命令行的选项也可以使用./bin/flink 工具获得。它们都有一个y或者yarn的前缀

•例如:./bin/flink run -m yarn-cluster -yn 2 ./data/batch/WordCount.jar

Flink 在yarn上的分布

Flink on Yarn

•ResourceManager

•NodeManager

•AppMater(jobmanager和它运行在一个Container中)

•Container(taskmanager运行在上面)

使用on-yarn的好处

•提高集群机器的利用率

•一套集群,可以执行MR任务,spark任务,flink任务等...

JobManager 高可用(HA)

1、说明

jobManager协调每个flink任务部署。它负责任务调度和资源管理。默认情况下,每个flink集群只有一个JobManager,这将导致一个单点故障(SPOF):如果JobManager挂了,则不能提交新的任务,并且运行中的程序也会失败。使用JobManager HA,集群可以从JobManager故障中恢复,从而避免SPOF(单点故障) 。 用户可以在standalone或 YARN集群 模式下,配置集群高可用

2、配置步骤

Standalone集群的高可用

•Standalone模式(独立模式)下JobManager的高可用性的基本思想是,任何时候都有一个 Master JobManager ,并且多个Standby JobManagers 。 Standby JobManagers可以在Master JobManager 挂掉的情况下接管集群成为Master JobManager。 这样保证了没有单点故障,一旦某一个Standby JobManager接管集群,程序就可以继续运行。 Standby JobManager和Master JobManager实例之间没有明确区别。 每个JobManager都可以成为Master或Standby节点

Yarn 集群高可用

•flink on yarn的HA 其实主要是利用yarn自己的job恢复机制

HA机制详细配置步骤见下篇博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值