追涨停一时爽?小心被“关小黑屋”!(新手必看!监管规则梳理,A 股涨停板背后的监管雷区!)

🌱 怒追涨停一时爽,监管“吃面”火葬场?A股避坑指南! 🌱

哈喽哇!👋 欢迎来到🌱新手村!我是你们的村长。 很多新手村民沉迷于追涨停的刺激感,却忽略了 A 股特有的「异动监管」机制。经常遇到妖股连续 几 个涨停后突然停牌核查,复牌直接跌停,无数跟风者血本无归。今天手把手教你识别监管红线,避开 "吃面" 陷阱!🍜

要知道,在咱们大 A 股,想随随便便“起飞”可没那么容易!交易所的眼睛可是雪亮的,一旦发现你有“不正常”的举动,就会把你“请去喝茶”。🍵 那么哪些行为会被盯上呢?今天村长就来好好跟大家唠唠嗑!

股市监管

🌴 演示环境 🌴

作为“新村民”,咱们的工具箱里除了交易软件,更重要的是一颗警惕的心!还有每天盯交易所公告的耐心!🔍 毕竟“妖风”

要利用Python和tushare库获取A股市涨停板数据,首先需要熟悉tushare库的安装和基本使用方法。tushare是一个提供A股市场历史数据的免费接口,非常适合于进行量化分析。以下是详细步骤: 参考资源链接:[Python量化分析:A涨停板探索与策略](https://wenku.csdn.net/doc/icgrczt5w6) 首先,确保已经安装了tushare库,可以通过pip安装: pip install tushare 然后,注册tushare网站获取个人token,并使用如下代码进行登录: import tushare as ts ts.set_token('your_token') pro = ts.pro_api() 接下来,使用tushare提供的接口函数来获取涨停板数据。例如,可以使用`ts_code`参数来查询特定票代码的数据: df = pro.daily(ts_code='000001.SZ', start_date='***', end_date='***') 如果要获取当前所有涨停票的数据,可以使用`limit_up`接口: df = pro.limit_up() 获取数据后,使用pandas库进行初步的描述性统计分析。首先对数据进行清洗和预处理,确保数据质量。例如,删除或填充缺失值,去除异常值等: df = df.dropna() # 删除缺失值 df = df[df['change_percent'] == '涨停'] # 只保留涨停的数据 然后,可以进行基本的描述性统计,例如计算涨停天数的频率、涨停票的平均涨幅等: df['change_percent'].describe() # 统计涨停频率和涨幅的描述性统计量 为了更深入地了解涨停板数据,可以绘制涨停板票的涨跌幅直方图、涨停频率的时间序列图等。这需要导入matplotlib库: import matplotlib.pyplot as plt plt.hist(df['change_percent'], bins=10) # 绘制涨停板票的涨跌幅直方图 以上步骤展示了如何结合Python和tushare库获取A股市涨停板数据,并进行基本的描述性统计分析。通过这些步骤,投资者可以快速了解市场的涨停趋势,并为下一步的深入分析打下基础。对于希望进一步提升量化分析能力的读者,建议详细阅读《Python量化分析:A涨停板探索与策略》。这本书不仅提供了涨停板数据获取的方法,还深入探讨了如何利用Python进行数据处理和分析,是量化投资者不可多得的实战指南。 参考资源链接:[Python量化分析:A涨停板探索与策略](https://wenku.csdn.net/doc/icgrczt5w6)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaoqiangclub

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值